Nuprl Lemma : vs-tree-val_wf

[K:RngSig]. ∀[vs:VectorSpace(K)]. ∀[t:l_tree(Point(vs) × Top;|K|)].  (vs-tree-val(vs;t) ∈ Point(vs))


Proof




Definitions occuring in Statement :  vs-tree-val: vs-tree-val(vs;t) vector-space: VectorSpace(K) vs-point: Point(vs) l_tree: l_tree(L;T) uall: [x:A]. B[x] top: Top member: t ∈ T product: x:A × B[x] rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T vs-tree-val: vs-tree-val(vs;t) so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v]) so_apply: x[s1;s2;s3;s4;s5] all: x:A. B[x]
Lemmas referenced :  l_tree_ind_wf_simple vs-point_wf top_wf rng_car_wf pi1_wf_top vs-mul_wf vs-add_wf l_tree_wf vector-space_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache dependent_functionElimination

Latex:
\mforall{}[K:RngSig].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[t:l\_tree(Point(vs)  \mtimes{}  Top;|K|)].
    (vs-tree-val(vs;t)  \mmember{}  Point(vs))



Date html generated: 2018_05_22-PM-09_42_05
Last ObjectModification: 2018_05_20-PM-10_41_53

Theory : linear!algebra


Home Index