Nuprl Lemma : vs-tree-val_wf
∀[K:RngSig]. ∀[vs:VectorSpace(K)]. ∀[t:l_tree(Point(vs) × Top;|K|)].  (vs-tree-val(vs;t) ∈ Point(vs))
Proof
Definitions occuring in Statement : 
vs-tree-val: vs-tree-val(vs;t), 
vector-space: VectorSpace(K), 
vs-point: Point(vs), 
l_tree: l_tree(L;T), 
uall: ∀[x:A]. B[x], 
top: Top, 
member: t ∈ T, 
product: x:A × B[x], 
rng_car: |r|, 
rng_sig: RngSig
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
vs-tree-val: vs-tree-val(vs;t), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v]), 
so_apply: x[s1;s2;s3;s4;s5], 
all: ∀x:A. B[x]
Lemmas referenced : 
l_tree_ind_wf_simple, 
vs-point_wf, 
top_wf, 
rng_car_wf, 
pi1_wf_top, 
vs-mul_wf, 
vs-add_wf, 
l_tree_wf, 
vector-space_wf, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
dependent_functionElimination
Latex:
\mforall{}[K:RngSig].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[t:l\_tree(Point(vs)  \mtimes{}  Top;|K|)].
    (vs-tree-val(vs;t)  \mmember{}  Point(vs))
Date html generated:
2018_05_22-PM-09_42_05
Last ObjectModification:
2018_05_20-PM-10_41_53
Theory : linear!algebra
Home
Index