Nuprl Lemma : l_tree_ind_wf_simple

[L,T,A:Type]. ∀[v:l_tree(L;T)]. ∀[leaf:val:L ⟶ A]. ∀[node:val:T
                                                            ⟶ left_subtree:l_tree(L;T)
                                                            ⟶ right_subtree:l_tree(L;T)
                                                            ⟶ A
                                                            ⟶ A
                                                            ⟶ A].
  (l_tree_ind(v;
              Leaf(val) leaf[val];
              Node(val,left_subtree,right_subtree) rec1,rec2.node[val;left_subtree;right_subtree;rec1;rec2])  ∈ A)


Proof




Definitions occuring in Statement :  l_tree_ind: l_tree_ind l_tree: l_tree(L;T) uall: [x:A]. B[x] so_apply: x[s1;s2;s3;s4;s5] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] prop: uimplies: supposing a all: x:A. B[x] true: True guard: {T}
Lemmas referenced :  l_tree_ind_wf true_wf l_tree_wf subtype_rel_dep_function set_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality because_Cache setEquality independent_isectElimination lambdaFormation dependent_set_memberEquality natural_numberEquality functionEquality setElimination rename equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[L,T,A:Type].  \mforall{}[v:l\_tree(L;T)].  \mforall{}[leaf:val:L  {}\mrightarrow{}  A].  \mforall{}[node:val:T
                                                                                                                        {}\mrightarrow{}  left$_{subtree}$:\000Cl\_tree(L;T)
                                                                                                                        {}\mrightarrow{}  right$_{subtree}$\000C:l\_tree(L;T)
                                                                                                                        {}\mrightarrow{}  A
                                                                                                                        {}\mrightarrow{}  A
                                                                                                                        {}\mrightarrow{}  A].
    (l\_tree\_ind(v;
                            Leaf(val){}\mRightarrow{}  leaf[val];
                            Node(val,left$_{subtree}$,right$_{subtree}$){}\mRightarrow{}\000C  rec1,rec2.node[val;left$_{subtree}$;...;rec1;rec2]) 
      \mmember{}  A)



Date html generated: 2018_05_22-PM-09_39_22
Last ObjectModification: 2015_12_28-PM-06_41_42

Theory : labeled!trees


Home Index