Nuprl Lemma : l_tree_ind_wf
∀[L,T,A:Type]. ∀[R:A ⟶ l_tree(L;T) ⟶ ℙ]. ∀[v:l_tree(L;T)]. ∀[leaf:val:L ⟶ {x:A| R[x;l_tree_leaf(val)]} ].
∀[node:val:T
       ⟶ left_subtree:l_tree(L;T)
       ⟶ right_subtree:l_tree(L;T)
       ⟶ {x:A| R[x;left_subtree]} 
       ⟶ {x:A| R[x;right_subtree]} 
       ⟶ {x:A| R[x;l_tree_node(val;left_subtree;right_subtree)]} ].
  (l_tree_ind(v;
              Leaf(val)
⇒ leaf[val];
              Node(val,left_subtree,right_subtree)
⇒ rec1,rec2.node[val;left_subtree;right_subtree;rec1;rec2]) 
   ∈ {x:A| R[x;v]} )
Proof
Definitions occuring in Statement : 
l_tree_ind: l_tree_ind, 
l_tree_node: l_tree_node(val;left_subtree;right_subtree)
, 
l_tree_leaf: l_tree_leaf(val)
, 
l_tree: l_tree(L;T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2;s3;s4;s5]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
l_tree_ind: l_tree_ind, 
so_apply: x[s1;s2;s3;s4;s5]
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
l_tree-definition, 
l_tree-induction, 
uniform-comp-nat-induction, 
l_tree-ext, 
eq_atom: x =a y
, 
bool_cases_sqequal, 
eqff_to_assert, 
any: any x
, 
btrue: tt
, 
bfalse: ff
, 
it: ⋅
, 
top: Top
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
guard: {T}
, 
or: P ∨ Q
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
l_tree-definition, 
top_wf, 
equal_wf, 
has-value_wf_base, 
is-exception_wf, 
lifting-strict-atom_eq, 
base_wf, 
l_tree_wf, 
l_tree_leaf_wf, 
l_tree_node_wf, 
all_wf, 
set_wf, 
l_tree-induction, 
uniform-comp-nat-induction, 
l_tree-ext, 
bool_cases_sqequal, 
eqff_to_assert
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
thin, 
introduction, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
because_Cache, 
sqequalSqle, 
divergentSqle, 
callbyvalueDecide, 
sqequalHypSubstitution, 
hypothesisEquality, 
unionEquality, 
unionElimination, 
sqleReflexivity, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
decideExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_isectElimination, 
independent_pairFormation, 
inrFormation, 
imageMemberEquality, 
imageElimination, 
inlFormation, 
instantiate, 
applyEquality, 
lambdaEquality, 
isectEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
setEquality, 
functionExtensionality, 
setElimination, 
rename, 
dependent_set_memberEquality
Latex:
\mforall{}[L,T,A:Type].  \mforall{}[R:A  {}\mrightarrow{}  l\_tree(L;T)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[v:l\_tree(L;T)].
\mforall{}[leaf:val:L  {}\mrightarrow{}  \{x:A|  R[x;l\_tree\_leaf(val)]\}  ].
\mforall{}[node:val:T
              {}\mrightarrow{}  left$_{subtree}$:l\_tree(L;T)
              {}\mrightarrow{}  right$_{subtree}$:l\_tree(L;T)
              {}\mrightarrow{}  \{x:A|  R[x;left$_{subtree}$]\} 
              {}\mrightarrow{}  \{x:A|  R[x;right$_{subtree}$]\} 
              {}\mrightarrow{}  \{x:A|  R[x;l\_tree\_node(val;left$_{subtree}$;right$_{subtree\000C}$)]\}  ].
    (l\_tree\_ind(v;
                            Leaf(val){}\mRightarrow{}  leaf[val];
                            Node(val,left$_{subtree}$,right$_{subtree}$){}\mRightarrow{}\000C  rec1,rec2.node[val;left$_{subtree}$;...;rec1;rec2]) 
      \mmember{}  \{x:A|  R[x;v]\}  )
Date html generated:
2018_05_22-PM-09_39_20
Last ObjectModification:
2017_03_04-PM-07_25_47
Theory : labeled!trees
Home
Index