Nuprl Lemma : l_tree-definition
∀[L,T,A:Type]. ∀[R:A ⟶ l_tree(L;T) ⟶ ℙ].
  ((∀val:L. {x:A| R[x;l_tree_leaf(val)]} )
  ⇒ (∀val:T. ∀left_subtree,right_subtree:l_tree(L;T).
        ({x:A| R[x;left_subtree]} 
        ⇒ {x:A| R[x;right_subtree]} 
        ⇒ {x:A| R[x;l_tree_node(val;left_subtree;right_subtree)]} ))
  ⇒ {∀v:l_tree(L;T). {x:A| R[x;v]} })
Proof
Definitions occuring in Statement : 
l_tree_node: l_tree_node(val;left_subtree;right_subtree), 
l_tree_leaf: l_tree_leaf(val), 
l_tree: l_tree(L;T), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
guard: {T}, 
so_lambda: λ2x.t[x], 
so_apply: x[s1;s2], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
prop: ℙ, 
all: ∀x:A. B[x]
Lemmas referenced : 
l_tree-induction, 
set_wf, 
l_tree_wf, 
all_wf, 
l_tree_node_wf, 
l_tree_leaf_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
cumulativity, 
functionEquality, 
setEquality, 
setElimination, 
rename, 
universeEquality
Latex:
\mforall{}[L,T,A:Type].  \mforall{}[R:A  {}\mrightarrow{}  l\_tree(L;T)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}val:L.  \{x:A|  R[x;l\_tree\_leaf(val)]\}  )
    {}\mRightarrow{}  (\mforall{}val:T.  \mforall{}left$_{subtree}$,right$_{subtree}$:l\_tree(L;T\000C).
                (\{x:A|  R[x;left$_{subtree}$]\} 
                {}\mRightarrow{}  \{x:A|  R[x;right$_{subtree}$]\} 
                {}\mRightarrow{}  \{x:A|  R[x;l\_tree\_node(val;left$_{subtree}$;right$_{subtre\000Ce}$)]\}  ))
    {}\mRightarrow{}  \{\mforall{}v:l\_tree(L;T).  \{x:A|  R[x;v]\}  \})
Date html generated:
2018_05_22-PM-09_39_15
Last ObjectModification:
2015_12_28-PM-06_41_47
Theory : labeled!trees
Home
Index