Nuprl Lemma : l_tree-induction

[L,T:Type]. ∀[P:l_tree(L;T) ⟶ ℙ].
  ((∀val:L. P[l_tree_leaf(val)])
   (∀val:T. ∀left_subtree,right_subtree:l_tree(L;T).
        (P[left_subtree]  P[right_subtree]  P[l_tree_node(val;left_subtree;right_subtree)]))
   {∀v:l_tree(L;T). P[v]})


Proof




Definitions occuring in Statement :  l_tree_node: l_tree_node(val;left_subtree;right_subtree) l_tree_leaf: l_tree_leaf(val) l_tree: l_tree(L;T) uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q guard: {T} so_lambda: λ2x.t[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B nat: prop: so_apply: x[s] all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A false: False ext-eq: A ≡ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) sq_type: SQType(T) eq_atom: =a y ifthenelse: if then else fi  l_tree_leaf: l_tree_leaf(val) l_tree_size: l_tree_size(p) bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb assert: b l_tree_node: l_tree_node(val;left_subtree;right_subtree) spreadn: spread3 cand: c∧ B ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T
Lemmas referenced :  uniform-comp-nat-induction all_wf l_tree_wf isect_wf le_wf l_tree_size_wf nat_wf less_than'_wf l_tree-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_term_value_add_lemma int_formula_prop_wf subtract_wf decidable__le itermSubtract_wf int_term_value_subtract_lemma lelt_wf uall_wf int_seg_wf l_tree_node_wf l_tree_leaf_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality cumulativity hypothesisEquality hypothesis applyEquality because_Cache setElimination rename functionExtensionality independent_functionElimination productElimination independent_pairEquality dependent_functionElimination voidElimination axiomEquality equalityTransitivity equalitySymmetry promote_hyp hypothesis_subsumption tokenEquality unionElimination equalityElimination independent_isectElimination instantiate atomEquality dependent_pairFormation independent_pairFormation applyLambdaEquality natural_numberEquality int_eqEquality intEquality isect_memberEquality voidEquality computeAll dependent_set_memberEquality imageElimination functionEquality universeEquality

Latex:
\mforall{}[L,T:Type].  \mforall{}[P:l\_tree(L;T)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}val:L.  P[l\_tree\_leaf(val)])
    {}\mRightarrow{}  (\mforall{}val:T.  \mforall{}left$_{subtree}$,right$_{subtree}$:l\_tree(L;T\000C).
                (P[left$_{subtree}$]  {}\mRightarrow{}  P[right$_{subtree}$]  {}\mRightarrow{}  P[l\_\000Ctree\_node(val;left$_{subtree}$;right$_{subtree}$)]))
    {}\mRightarrow{}  \{\mforall{}v:l\_tree(L;T).  P[v]\})



Date html generated: 2018_05_22-PM-09_39_13
Last ObjectModification: 2017_03_04-PM-07_25_43

Theory : labeled!trees


Home Index