Nuprl Lemma : l_tree-induction
∀[L,T:Type]. ∀[P:l_tree(L;T) ⟶ ℙ].
((∀val:L. P[l_tree_leaf(val)])
⇒ (∀val:T. ∀left_subtree,right_subtree:l_tree(L;T).
(P[left_subtree]
⇒ P[right_subtree]
⇒ P[l_tree_node(val;left_subtree;right_subtree)]))
⇒ {∀v:l_tree(L;T). P[v]})
Proof
Definitions occuring in Statement :
l_tree_node: l_tree_node(val;left_subtree;right_subtree)
,
l_tree_leaf: l_tree_leaf(val)
,
l_tree: l_tree(L;T)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
guard: {T}
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
guard: {T}
,
so_lambda: λ2x.t[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
le: A ≤ B
,
and: P ∧ Q
,
not: ¬A
,
false: False
,
ext-eq: A ≡ B
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
sq_type: SQType(T)
,
eq_atom: x =a y
,
ifthenelse: if b then t else f fi
,
l_tree_leaf: l_tree_leaf(val)
,
l_tree_size: l_tree_size(p)
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
bnot: ¬bb
,
assert: ↑b
,
l_tree_node: l_tree_node(val;left_subtree;right_subtree)
,
spreadn: spread3,
cand: A c∧ B
,
ge: i ≥ j
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
less_than: a < b
,
squash: ↓T
Lemmas referenced :
uniform-comp-nat-induction,
all_wf,
l_tree_wf,
isect_wf,
le_wf,
l_tree_size_wf,
nat_wf,
less_than'_wf,
l_tree-ext,
eq_atom_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_atom,
subtype_base_sq,
atom_subtype_base,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_atom,
nat_properties,
decidable__lt,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformless_wf,
itermConstant_wf,
itermVar_wf,
intformle_wf,
itermAdd_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_le_lemma,
int_term_value_add_lemma,
int_formula_prop_wf,
subtract_wf,
decidable__le,
itermSubtract_wf,
int_term_value_subtract_lemma,
lelt_wf,
uall_wf,
int_seg_wf,
l_tree_node_wf,
l_tree_leaf_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
sqequalRule,
lambdaEquality,
cumulativity,
hypothesisEquality,
hypothesis,
applyEquality,
because_Cache,
setElimination,
rename,
functionExtensionality,
independent_functionElimination,
productElimination,
independent_pairEquality,
dependent_functionElimination,
voidElimination,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
promote_hyp,
hypothesis_subsumption,
tokenEquality,
unionElimination,
equalityElimination,
independent_isectElimination,
instantiate,
atomEquality,
dependent_pairFormation,
independent_pairFormation,
applyLambdaEquality,
natural_numberEquality,
int_eqEquality,
intEquality,
isect_memberEquality,
voidEquality,
computeAll,
dependent_set_memberEquality,
imageElimination,
functionEquality,
universeEquality
Latex:
\mforall{}[L,T:Type]. \mforall{}[P:l\_tree(L;T) {}\mrightarrow{} \mBbbP{}].
((\mforall{}val:L. P[l\_tree\_leaf(val)])
{}\mRightarrow{} (\mforall{}val:T. \mforall{}left$_{subtree}$,right$_{subtree}$:l\_tree(L;T\000C).
(P[left$_{subtree}$] {}\mRightarrow{} P[right$_{subtree}$] {}\mRightarrow{} P[l\_\000Ctree\_node(val;left$_{subtree}$;right$_{subtree}$)]))
{}\mRightarrow{} \{\mforall{}v:l\_tree(L;T). P[v]\})
Date html generated:
2018_05_22-PM-09_39_13
Last ObjectModification:
2017_03_04-PM-07_25_43
Theory : labeled!trees
Home
Index