Nuprl Lemma : l_tree_node_wf

[L,T:Type]. ∀[val:T]. ∀[left_subtree,right_subtree:l_tree(L;T)].
  (l_tree_node(val;left_subtree;right_subtree) ∈ l_tree(L;T))


Proof




Definitions occuring in Statement :  l_tree_node: l_tree_node(val;left_subtree;right_subtree) l_tree: l_tree(L;T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T l_tree: l_tree(L;T) l_tree_node: l_tree_node(val;left_subtree;right_subtree) eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt subtype_rel: A ⊆B ext-eq: A ≡ B and: P ∧ Q l_treeco_size: l_treeco_size(p) l_tree_size: l_tree_size(p) spreadn: spread3 nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  l_treeco-ext l_treeco_wf ifthenelse_wf eq_atom_wf add_nat_wf false_wf le_wf l_tree_size_wf nat_wf value-type-has-value set-value-type int-value-type equal_wf has-value_wf-partial l_treeco_size_wf l_tree_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut dependent_set_memberEquality introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache sqequalRule dependent_pairEquality tokenEquality setElimination rename productEquality instantiate universeEquality voidEquality applyEquality productElimination natural_numberEquality independent_pairFormation lambdaFormation cumulativity independent_isectElimination intEquality lambdaEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[L,T:Type].  \mforall{}[val:T].  \mforall{}[left$_{subtree}$,right$_{subtree}$:\000Cl\_tree(L;T)].
    (l\_tree\_node(val;left$_{subtree}$;right$_{subtree}$)  \mmember{}  l\_t\000Cree(L;T))



Date html generated: 2018_05_22-PM-09_38_43
Last ObjectModification: 2017_03_04-PM-07_25_21

Theory : labeled!trees


Home Index