Nuprl Lemma : l_tree_covariant

[A,B,T:Type].  l_tree(A;T) ⊆l_tree(B;T) supposing A ⊆B


Proof




Definitions occuring in Statement :  l_tree: l_tree(L;T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q le: A ≤ B less_than': less_than'(a;b) ext-eq: A ≡ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) sq_type: SQType(T) eq_atom: =a y ifthenelse: if then else fi  l_tree_leaf: l_tree_leaf(val) l_tree_size: l_tree_size(p) bfalse: ff bnot: ¬bb assert: b l_tree_node: l_tree_node(val;left_subtree;right_subtree) spreadn: spread3 cand: c∧ B less_than: a < b squash: T
Lemmas referenced :  subtype_rel_wf l_tree_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf le_wf l_tree_size_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma l_tree-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base l_tree_leaf_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom decidable__lt itermAdd_wf int_term_value_add_lemma lelt_wf nat_wf l_tree_node_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule axiomEquality hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry lambdaFormation setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination applyEquality productElimination unionElimination applyLambdaEquality hypothesis_subsumption dependent_set_memberEquality promote_hyp tokenEquality equalityElimination instantiate atomEquality imageElimination addEquality

Latex:
\mforall{}[A,B,T:Type].    l\_tree(A;T)  \msubseteq{}r  l\_tree(B;T)  supposing  A  \msubseteq{}r  B



Date html generated: 2018_05_22-PM-09_39_26
Last ObjectModification: 2017_03_04-PM-07_25_49

Theory : labeled!trees


Home Index