Nuprl Lemma : implies-vs-subspace
∀K:Rng. ∀vs:VectorSpace(K).
  ∀[P:Point(vs) ⟶ ℙ]. (P[0] 
⇒ (∀x,y:Point(vs).  (P[x] 
⇒ P[y] 
⇒ (∀k:|K|. P[k * x + y]))) 
⇒ vs-subspace(K;vs;x.P[x]))
Proof
Definitions occuring in Statement : 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
vs-mul: a * x
, 
vs-add: x + y
, 
vs-0: 0
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
rng: Rng
, 
rng_car: |r|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s]
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
vs-point_wf, 
rng_car_wf, 
all_wf, 
vs-mul_wf, 
vs-add_wf, 
vs-0_wf, 
vector-space_wf, 
rng_wf, 
rng_one_wf, 
vs-mul-linear, 
subtype_rel_self, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
rng_sig_wf, 
vs-mul-one, 
vs-mon_ident
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
independent_pairFormation, 
hypothesis, 
cut, 
applyEquality, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}K:Rng.  \mforall{}vs:VectorSpace(K).
    \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}]
        (P[0]
        {}\mRightarrow{}  (\mforall{}x,y:Point(vs).    (P[x]  {}\mRightarrow{}  P[y]  {}\mRightarrow{}  (\mforall{}k:|K|.  P[k  *  x  +  y])))
        {}\mRightarrow{}  vs-subspace(K;vs;x.P[x]))
Date html generated:
2018_05_22-PM-09_42_02
Last ObjectModification:
2018_05_20-PM-10_41_50
Theory : linear!algebra
Home
Index