Step
*
1
of Lemma
vs-lift-add
1. S : Type
2. K : CRng
3. vs : VectorSpace(K)
4. f : S ⟶ vs."Point"
5. u : Base
6. u1 : Base
7. u = u1 ∈ pertype(λa,b. ((a ∈ basic-formal-sum(K;S)) ∧ (b ∈ basic-formal-sum(K;S)) ∧ bfs-equiv(K;S;a;b)))
8. u ∈ basic-formal-sum(K;S)
9. u1 ∈ basic-formal-sum(K;S)
10. bfs-equiv(K;S;u;u1)
11. v : Base
12. v1 : Base
13. v = v1 ∈ pertype(λa,b. ((a ∈ basic-formal-sum(K;S)) ∧ (b ∈ basic-formal-sum(K;S)) ∧ bfs-equiv(K;S;a;b)))
14. v ∈ basic-formal-sum(K;S)
15. v1 ∈ basic-formal-sum(K;S)
16. bfs-equiv(K;S;v;v1)
⊢ vs-lift(vs;f;u + v) = vs-lift(vs;f;u1) + vs-lift(vs;f;v1) ∈ Point(vs)
BY
{ (Subst' vs-lift(vs;f;u + v) = vs-lift(vs;f;u) + vs-lift(vs;f;v) ∈ Point(vs) 0 THENA Auto) }
1
1. S : Type
2. K : CRng
3. vs : VectorSpace(K)
4. f : S ⟶ vs."Point"
5. u : Base
6. u1 : Base
7. u = u1 ∈ pertype(λa,b. ((a ∈ basic-formal-sum(K;S)) ∧ (b ∈ basic-formal-sum(K;S)) ∧ bfs-equiv(K;S;a;b)))
8. u ∈ basic-formal-sum(K;S)
9. u1 ∈ basic-formal-sum(K;S)
10. bfs-equiv(K;S;u;u1)
11. v : Base
12. v1 : Base
13. v = v1 ∈ pertype(λa,b. ((a ∈ basic-formal-sum(K;S)) ∧ (b ∈ basic-formal-sum(K;S)) ∧ bfs-equiv(K;S;a;b)))
14. v ∈ basic-formal-sum(K;S)
15. v1 ∈ basic-formal-sum(K;S)
16. bfs-equiv(K;S;v;v1)
⊢ vs-lift(vs;f;u) + vs-lift(vs;f;v) = vs-lift(vs;f;u1) + vs-lift(vs;f;v1) ∈ Point(vs)
Latex:
Latex:
1. S : Type
2. K : CRng
3. vs : VectorSpace(K)
4. f : S {}\mrightarrow{} vs."Point"
5. u : Base
6. u1 : Base
7. u = u1
8. u \mmember{} basic-formal-sum(K;S)
9. u1 \mmember{} basic-formal-sum(K;S)
10. bfs-equiv(K;S;u;u1)
11. v : Base
12. v1 : Base
13. v = v1
14. v \mmember{} basic-formal-sum(K;S)
15. v1 \mmember{} basic-formal-sum(K;S)
16. bfs-equiv(K;S;v;v1)
\mvdash{} vs-lift(vs;f;u + v) = vs-lift(vs;f;u1) + vs-lift(vs;f;v1)
By
Latex:
(Subst' vs-lift(vs;f;u + v) = vs-lift(vs;f;u) + vs-lift(vs;f;v) 0 THENA Auto)
Home
Index