Step * 1 2 of Lemma presheaf-fun-as-presheaf-pi

.....subterm..... T:t
2:n
1. SmallCategory
2. ps_context{j:l}(C)
3. {X ⊢ _}
4. {X ⊢ _}
⊢ I,J,f,a,w,K,g. (w (cat-comp(C) f)))
I,J,f,a,w,K,g. (w (cat-comp(C) f)))
∈ (I:cat-ob(C)
  ⟶ J:cat-ob(C)
  ⟶ f:(cat-arrow(C) I)
  ⟶ a:X(I)
  ⟶ ((λI,a. presheaf-fun-family(C; X; A; B; I; a)) a)
  ⟶ ((λI,a. presheaf-fun-family(C; X; A; B; I; a)) f(a)))
BY
(Fold `member` 0
   THEN Reduce 0
   THEN Auto
   THEN InstLemma `presheaf-fun-family-comp` [⌜C⌝;⌜X⌝;⌜X⌝;⌜1(X)⌝;⌜I⌝;⌜J⌝;⌜f⌝;⌜a⌝;⌜A⌝;⌜B⌝;⌜w⌝]⋅
   THEN Auto) }


Latex:


Latex:
.....subterm.....  T:t
2:n
1.  C  :  SmallCategory
2.  X  :  ps\_context\{j:l\}(C)
3.  A  :  \{X  \mvdash{}  \_\}
4.  B  :  \{X  \mvdash{}  \_\}
\mvdash{}  (\mlambda{}I,J,f,a,w,K,g.  (w  K  (cat-comp(C)  K  J  I  g  f)))  =  (\mlambda{}I,J,f,a,w,K,g.  (w  K  (cat-comp(C)  K  J  I  g  f)))


By


Latex:
(Fold  `member`  0
  THEN  Reduce  0
  THEN  Auto
  THEN  InstLemma  `presheaf-fun-family-comp`  [\mkleeneopen{}C\mkleeneclose{};\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}1(X)\mkleeneclose{};\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}J\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}B\mkleeneclose{};\mkleeneopen{}w\mkleeneclose{}]\mcdot{}
  THEN  Auto)




Home Index