Step
*
3
of Lemma
ps_context-ext
1. C : SmallCategory
⊢ {FM:F:cat-ob(C) ⟶ 𝕌{j'} × (I:cat-ob(C) ⟶ J:cat-ob(C) ⟶ (cat-arrow(C) J I) ⟶ (F I) ⟶ (F J))|
let F,M = FM
in (∀I:cat-ob(C). ∀s:FM(I). (cat-id(C) I(s) = s ∈ FM(I)))
∧ (∀I,J,K:cat-ob(C). ∀f:cat-arrow(C) J I. ∀g:cat-arrow(C) K J. ∀s:FM(I).
(cat-comp(C) K J I g f(s) = g(f(s)) ∈ FM(K)))} ≡ ps_context{j:l}(C)
BY
{ (DCat 1
THEN RepUR ``ps_context cat-functor op-cat names-cat type-cat cat-ob cat-arrow`` 0
THEN RepUR ``cat-id cat-comp I_set psc-restriction compose`` 0
THEN RepUR ``functor-ob`` 0) }
1
1. Cob : Type
2. Carrow : Cob ⟶ Cob ⟶ Type
3. Cid : x:Cob ⟶ (Carrow x x)
4. Ccomp : x:Cob ⟶ y:Cob ⟶ z:Cob ⟶ (Carrow x y) ⟶ (Carrow y z) ⟶ (Carrow x z)
5. [%1] : (∀x,y:Cob. ∀f:Carrow x y.
(((Ccomp x x y (Cid x) f) = f ∈ (Carrow x y)) ∧ ((Ccomp x y y f (Cid y)) = f ∈ (Carrow x y))))
∧ (∀x,y,z,w:Cob. ∀f:Carrow x y. ∀g:Carrow y z. ∀h:Carrow z w.
((Ccomp x z w (Ccomp x y z f g) h) = (Ccomp x y w f (Ccomp y z w g h)) ∈ (Carrow x w)))
⊢ {FM:F:Cob ⟶ 𝕌{j'} × (I:Cob ⟶ J:Cob ⟶ (Carrow J I) ⟶ (F I) ⟶ (F J))|
let F,M = FM
in (∀I:Cob. ∀s:(fst(FM)) I. (((snd(FM)) I I (Cid I) s) = s ∈ ((fst(FM)) I)))
∧ (∀I,J,K:Cob. ∀f:Carrow J I. ∀g:Carrow K J. ∀s:(fst(FM)) I.
(((snd(FM)) I K (Ccomp K J I g f) s) = ((snd(FM)) J K g ((snd(FM)) I J f s)) ∈ ((fst(FM)) K)))} ≡
{FM:F:Cob ⟶ 𝕌{j'} × (x:Cob ⟶ y:Cob ⟶ (Carrow y x) ⟶ (F x) ⟶ (F y))|
let F,M = FM
in (∀x:Cob. ((M x x (Cid x)) = (λx.x) ∈ ((F x) ⟶ (F x))))
∧ (∀x,y,z:Cob. ∀f:Carrow y x. ∀g:Carrow z y.
((M x z (Ccomp z y x g f)) = (λx@0.(M y z g (M x y f x@0))) ∈ ((F x) ⟶ (F z))))}
Latex:
Latex:
1. C : SmallCategory
\mvdash{} \{FM:F:cat-ob(C) {}\mrightarrow{} \mBbbU{}\{j'\} \mtimes{} (I:cat-ob(C) {}\mrightarrow{} J:cat-ob(C) {}\mrightarrow{} (cat-arrow(C) J I) {}\mrightarrow{} (F I) {}\mrightarrow{} (F J))|
let F,M = FM
in (\mforall{}I:cat-ob(C). \mforall{}s:FM(I). (cat-id(C) I(s) = s))
\mwedge{} (\mforall{}I,J,K:cat-ob(C). \mforall{}f:cat-arrow(C) J I. \mforall{}g:cat-arrow(C) K J. \mforall{}s:FM(I).
(cat-comp(C) K J I g f(s) = g(f(s))))\} \mequiv{} ps\_context\{j:l\}(C)
By
Latex:
(DCat 1
THEN RepUR ``ps\_context cat-functor op-cat names-cat type-cat cat-ob cat-arrow`` 0
THEN RepUR ``cat-id cat-comp I\_set psc-restriction compose`` 0
THEN RepUR ``functor-ob`` 0)
Home
Index