Nuprl Lemma : ps_context-ext

[C:SmallCategory]
  {FM:F:cat-ob(C) ⟶ 𝕌{j'} × (I:cat-ob(C) ⟶ J:cat-ob(C) ⟶ (cat-arrow(C) I) ⟶ (F I) ⟶ (F J))| 
   let F,M FM 
   in (∀I:cat-ob(C). ∀s:FM(I).  (cat-id(C) I(s) s ∈ FM(I)))
      ∧ (∀I,J,K:cat-ob(C). ∀f:cat-arrow(C) I. ∀g:cat-arrow(C) J. ∀s:FM(I).
           (cat-comp(C) f(s) g(f(s)) ∈ FM(K)))}  ≡ ps_context{j:l}(C)


Proof




Definitions occuring in Statement :  psc-restriction: f(s) I_set: A(I) ps_context: __⊢ ext-eq: A ≡ B uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] spread: spread def product: x:A × B[x] universe: Type equal: t ∈ T cat-comp: cat-comp(C) cat-id: cat-id(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sq_stable: SqStable(P) implies:  Q squash: T all: x:A. B[x] and: P ∧ Q prop: subtype_rel: A ⊆B small-category: SmallCategory spreadn: spread4 ps_context: __⊢ cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) pi1: fst(t) pi2: snd(t) type-cat: TypeCat op-cat: op-cat(C) cat-functor: Functor(C1;C2) compose: g psc-restriction: f(s) I_set: A(I) functor-ob: ob(F) ext-eq: A ≡ B cand: c∧ B guard: {T} true: True uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  sq_stable__ext-eq small-category_wf cat-ob_wf cat-arrow_wf I_set_pair_redex_lemma psc_restriction_pair_lemma equal_wf cat-id_wf cat-comp_wf ps_context_wf small-category-cumulativity-2 cat_id_tuple_lemma cat_comp_tuple_lemma cat_ob_pair_lemma cat_arrow_triple_lemma istype-universe iff_weakening_equal squash_wf true_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesis independent_functionElimination sqequalRule imageMemberEquality hypothesisEquality baseClosed imageElimination universeIsType setEquality productEquality functionEquality cumulativity universeEquality applyEquality productElimination dependent_functionElimination Error :memTop,  setElimination rename independent_pairFormation lambdaEquality_alt setIsType productIsType functionIsType because_Cache equalityIstype dependent_set_memberEquality_alt dependent_pairEquality_alt inhabitedIsType lambdaFormation_alt functionExtensionality_alt natural_numberEquality equalityTransitivity equalitySymmetry independent_isectElimination

Latex:
\mforall{}[C:SmallCategory]
    \{FM:F:cat-ob(C)  {}\mrightarrow{}  \mBbbU{}\{j'\}  \mtimes{}  (I:cat-ob(C)  {}\mrightarrow{}  J:cat-ob(C)  {}\mrightarrow{}  (cat-arrow(C)  J  I)  {}\mrightarrow{}  (F  I)  {}\mrightarrow{}  (F  J))| 
      let  F,M  =  FM 
      in  (\mforall{}I:cat-ob(C).  \mforall{}s:FM(I).    (cat-id(C)  I(s)  =  s))
            \mwedge{}  (\mforall{}I,J,K:cat-ob(C).  \mforall{}f:cat-arrow(C)  J  I.  \mforall{}g:cat-arrow(C)  K  J.  \mforall{}s:FM(I).
                      (cat-comp(C)  K  J  I  g  f(s)  =  g(f(s))))\}    \mequiv{}  ps\_context\{j:l\}(C)



Date html generated: 2020_05_20-PM-01_23_22
Last ObjectModification: 2020_03_31-PM-07_30_09

Theory : presheaf!models!of!type!theory


Home Index