Nuprl Lemma : sq_stable__ext-eq

[A,B:Type].  SqStable(A ≡ B)


Proof




Definitions occuring in Statement :  ext-eq: A ≡ B sq_stable: SqStable(P) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  ext-eq: A ≡ B uall: [x:A]. B[x] member: t ∈ T prop: implies:  Q sq_stable: SqStable(P) and: P ∧ Q subtype_rel: A ⊆B
Lemmas referenced :  sq_stable__and subtype_rel_wf sq_stable__subtype_rel squash_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis isect_memberEquality independent_functionElimination lambdaFormation because_Cache lambdaEquality dependent_functionElimination productElimination independent_pairEquality axiomEquality productEquality universeEquality

Latex:
\mforall{}[A,B:Type].    SqStable(A  \mequiv{}  B)



Date html generated: 2018_05_21-PM-00_00_48
Last ObjectModification: 2018_05_19-AM-07_13_25

Theory : subtype_0


Home Index