Nuprl Lemma : sq_stable__ext-eq
∀[A,B:Type].  SqStable(A ≡ B)
Proof
Definitions occuring in Statement : 
ext-eq: A ≡ B
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
sq_stable__and, 
subtype_rel_wf, 
sq_stable__subtype_rel, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isect_memberEquality, 
independent_functionElimination, 
lambdaFormation, 
because_Cache, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
productEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].    SqStable(A  \mequiv{}  B)
Date html generated:
2018_05_21-PM-00_00_48
Last ObjectModification:
2018_05_19-AM-07_13_25
Theory : subtype_0
Home
Index