Nuprl Lemma : pscm-dep_term_p_lemma
∀t,s,A,Delta,X:Top.  (((t)tp{i:l})(s)dep ~ ((t)s)tp{i:l})
Proof
Definitions occuring in Statement : 
pscm-dependent: (s)dep, 
typed-psc-fst: tp{i:l}, 
pscm-ap-term: (t)s, 
pscm-ap-type: (AF)s, 
top: Top, 
all: ∀x:A. B[x], 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
pscm-ap-term: (t)s, 
pscm-ap-type: (AF)s, 
typed-psc-fst: tp{i:l}, 
pscm-dependent: (s)dep, 
psc-fst: p, 
pscm-ap: (s)x, 
typed-psc-snd: tq, 
pscm-comp: G o F, 
pscm-adjoin: (s;u), 
pi1: fst(t), 
compose: f o g, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
hypothesis, 
introduction, 
extract_by_obid
Latex:
\mforall{}t,s,A,Delta,X:Top.    (((t)tp\{i:l\})(s)dep  \msim{}  ((t)s)tp\{i:l\})
Date html generated:
2018_05_23-AM-08_16_07
Last ObjectModification:
2018_05_20-PM-09_56_29
Theory : presheaf!models!of!type!theory
Home
Index