Step
*
1
of Lemma
rat-cube-diameter-bound
1. k : ℕ
2. c : ℚCube(k)
3. x : ℝ^k
4. y : ℝ^k
5. in-rat-cube(k;x;c)
6. in-rat-cube(k;y;c)
7. i : ℤ
8. 0 ≤ i
9. i ≤ (k - 1)
⊢ (rmetric() (x i) (y i)) ≤ rmax(r0;rat2real(snd((c i))) - rat2real(fst((c i))))
BY
{ (RepeatFor 2 (((D 5 With ⌜i⌝ THENA Auto) THEN MoveToConcl (-1)))
THEN GenConclTerms Auto [⌜x i⌝;⌜y i⌝;⌜c i⌝]⋅
THEN All Thin
THEN D -1
THEN RepUR ``rmetric`` 0
THEN (GenConcl ⌜rat2real(v3) = a ∈ ℝ⌝⋅ THENA Auto)
THEN (GenConcl ⌜rat2real(v4) = b ∈ ℝ⌝⋅ THENA Auto)
THEN All Thin
THEN Auto) }
1
1. v : ℝ
2. v1 : ℝ
3. a : ℝ
4. b : ℝ
5. a ≤ v1
6. v1 ≤ b
7. a ≤ v
8. v ≤ b
⊢ |v - v1| ≤ rmax(r0;b - a)
Latex:
Latex:
1. k : \mBbbN{}
2. c : \mBbbQ{}Cube(k)
3. x : \mBbbR{}\^{}k
4. y : \mBbbR{}\^{}k
5. in-rat-cube(k;x;c)
6. in-rat-cube(k;y;c)
7. i : \mBbbZ{}
8. 0 \mleq{} i
9. i \mleq{} (k - 1)
\mvdash{} (rmetric() (x i) (y i)) \mleq{} rmax(r0;rat2real(snd((c i))) - rat2real(fst((c i))))
By
Latex:
(RepeatFor 2 (((D 5 With \mkleeneopen{}i\mkleeneclose{} THENA Auto) THEN MoveToConcl (-1)))
THEN GenConclTerms Auto [\mkleeneopen{}x i\mkleeneclose{};\mkleeneopen{}y i\mkleeneclose{};\mkleeneopen{}c i\mkleeneclose{}]\mcdot{}
THEN All Thin
THEN D -1
THEN RepUR ``rmetric`` 0
THEN (GenConcl \mkleeneopen{}rat2real(v3) = a\mkleeneclose{}\mcdot{} THENA Auto)
THEN (GenConcl \mkleeneopen{}rat2real(v4) = b\mkleeneclose{}\mcdot{} THENA Auto)
THEN All Thin
THEN Auto)
Home
Index