Nuprl Lemma : rat-cube-diameter-bound
∀[k:ℕ]. ∀[c:ℚCube(k)]. ∀[x,y:ℝ^k].
(mdist(rn-prod-metric(k);x;y) ≤ rat-cube-diameter(k;c)) supposing (in-rat-cube(k;y;c) and in-rat-cube(k;x;c))
Proof
Definitions occuring in Statement :
rat-cube-diameter: rat-cube-diameter(k;c)
,
in-rat-cube: in-rat-cube(k;p;c)
,
rn-prod-metric: rn-prod-metric(n)
,
real-vec: ℝ^n
,
mdist: mdist(d;x;y)
,
rleq: x ≤ y
,
nat: ℕ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
rational-cube: ℚCube(k)
Definitions unfolded in proof :
rge: x ≥ y
,
cand: A c∧ B
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
req_int_terms: t1 ≡ t2
,
guard: {T}
,
rev_uimplies: rev_uimplies(P;Q)
,
uiff: uiff(P;Q)
,
rmetric: rmetric()
,
in-rat-cube: in-rat-cube(k;p;c)
,
rnonneg: rnonneg(x)
,
rleq: x ≤ y
,
pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m]
,
pi1: fst(t)
,
pi2: snd(t)
,
rational-interval: ℚInterval
,
rational-cube: ℚCube(k)
,
so_apply: x[s]
,
prop: ℙ
,
top: Top
,
false: False
,
exists: ∃x:A. B[x]
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
implies: P
⇒ Q
,
not: ¬A
,
or: P ∨ Q
,
decidable: Dec(P)
,
all: ∀x:A. B[x]
,
ge: i ≥ j
,
squash: ↓T
,
less_than: a < b
,
le: A ≤ B
,
and: P ∧ Q
,
lelt: i ≤ j < k
,
int_seg: {i..j-}
,
real-vec: ℝ^n
,
metric: metric(X)
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
nat: ℕ
,
prod-metric: prod-metric(k;d)
,
mdist: mdist(d;x;y)
,
rn-prod-metric: rn-prod-metric(n)
,
rat-cube-diameter: rat-cube-diameter(k;c)
,
uimplies: b supposing a
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
radd_functionality_wrt_rleq,
rleq-implies-rleq,
rleq_weakening_equal,
rsub_functionality_wrt_rleq,
rleq_functionality_wrt_implies,
rleq_weakening,
rabs-difference-bound-rleq,
real_term_value_const_lemma,
real_term_value_var_lemma,
real_term_value_add_lemma,
real_term_value_sub_lemma,
real_polynomial_null,
req-iff-rsub-is-0,
rmax-req,
req_weakening,
rleq_functionality,
rleq_transitivity,
radd_wf,
radd-preserves-rleq,
rabs_wf,
rleq_wf,
istype-nat,
rational-cube_wf,
real-vec_wf,
in-rat-cube_wf,
le_witness_for_triv,
rat2real_wf,
rsub_wf,
int-to-real_wf,
rmax_wf,
int_seg_wf,
istype-less_than,
istype-le,
int_term_value_subtract_lemma,
int_term_value_add_lemma,
int_formula_prop_less_lemma,
itermSubtract_wf,
itermAdd_wf,
intformless_wf,
decidable__lt,
int_formula_prop_wf,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_not_lemma,
istype-void,
int_formula_prop_and_lemma,
istype-int,
itermVar_wf,
itermConstant_wf,
intformle_wf,
intformnot_wf,
intformand_wf,
full-omega-unsat,
decidable__le,
nat_properties,
int_seg_properties,
rmetric_wf,
subtract_wf,
rsum_functionality_wrt_rleq
Rules used in proof :
isectIsTypeImplies,
functionIsTypeImplies,
equalityIstype,
lambdaFormation_alt,
addEquality,
because_Cache,
productIsType,
universeIsType,
voidElimination,
isect_memberEquality_alt,
int_eqEquality,
dependent_pairFormation_alt,
independent_functionElimination,
approximateComputation,
independent_isectElimination,
unionElimination,
dependent_functionElimination,
independent_pairFormation,
imageElimination,
productElimination,
dependent_set_memberEquality_alt,
equalitySymmetry,
equalityTransitivity,
inhabitedIsType,
applyEquality,
lambdaEquality_alt,
hypothesis,
hypothesisEquality,
rename,
setElimination,
natural_numberEquality,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
sqequalRule,
cut,
introduction,
isect_memberFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}]. \mforall{}[c:\mBbbQ{}Cube(k)]. \mforall{}[x,y:\mBbbR{}\^{}k].
(mdist(rn-prod-metric(k);x;y) \mleq{} rat-cube-diameter(k;c)) supposing
(in-rat-cube(k;y;c) and
in-rat-cube(k;x;c))
Date html generated:
2019_10_31-AM-06_03_19
Last ObjectModification:
2019_10_31-AM-00_15_36
Theory : real!vectors
Home
Index