Nuprl Lemma : rational-cube_wf

[k:ℕ]. (ℚCube(k) ∈ Type)


Proof




Definitions occuring in Statement :  rational-cube: Cube(k) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  nat: rational-cube: Cube(k) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat rational-interval_wf int_seg_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality hypothesis hypothesisEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid functionEquality sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  (\mBbbQ{}Cube(k)  \mmember{}  Type)



Date html generated: 2019_10_29-AM-07_48_44
Last ObjectModification: 2019_10_17-AM-11_18_50

Theory : rationals


Home Index