Nuprl Lemma : rational-cube_wf
∀[k:ℕ]. (ℚCube(k) ∈ Type)
Proof
Definitions occuring in Statement : 
rational-cube: ℚCube(k)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
nat: ℕ
, 
rational-cube: ℚCube(k)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
rational-interval_wf, 
int_seg_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
functionEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  (\mBbbQ{}Cube(k)  \mmember{}  Type)
Date html generated:
2019_10_29-AM-07_48_44
Last ObjectModification:
2019_10_17-AM-11_18_50
Theory : rationals
Home
Index