Nuprl Lemma : rmax-req

[x,y:ℝ].  rmax(x;y) supposing x ≤ y


Proof




Definitions occuring in Statement :  rleq: x ≤ y rmax: rmax(x;y) req: y real: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q rev_implies:  Q exists: x:A. B[x] nat_plus: + prop: so_lambda: λ2x.t[x] int_upper: {i...} real: le: A ≤ B guard: {T} subtype_rel: A ⊆B so_apply: x[s] rmax: rmax(x;y) true: True bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b squash: T
Lemmas referenced :  rleq_antisymmetry rmax_wf rleq-iff int_upper_wf all_wf le_wf subtract_wf less_than_transitivity1 less_than_wf nat_plus_wf rleq-rmax req_witness rleq_wf real_wf le_int_wf bool_wf eqtt_to_assert assert_of_le_int int_upper_properties nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermMultiply_wf itermConstant_wf itermVar_wf itermSubtract_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_formula_prop_less_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot squash_wf true_wf imax_unfold iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination dependent_functionElimination because_Cache productElimination independent_functionElimination lambdaFormation dependent_pairFormation setElimination rename sqequalRule lambdaEquality multiplyEquality minusEquality natural_numberEquality applyEquality dependent_set_memberEquality isect_memberEquality equalityTransitivity equalitySymmetry unionElimination equalityElimination int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll promote_hyp instantiate cumulativity imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[x,y:\mBbbR{}].    rmax(x;y)  =  y  supposing  x  \mleq{}  y



Date html generated: 2017_10_03-AM-08_30_05
Last ObjectModification: 2017_07_28-AM-07_26_20

Theory : reals


Home Index