Nuprl Lemma : rleq-iff

x,y:ℝ.  (x ≤ ⇐⇒ ∀n:ℕ+. ∃N:ℕ+. ∀m:{N...}. (((-2) m) ≤ (n ((y m) m))))


Proof




Definitions occuring in Statement :  rleq: x ≤ y real: int_upper: {i...} nat_plus: + le: A ≤ B all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a multiply: m subtract: m minus: -n natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] real: rleq: x ≤ y iff: ⇐⇒ Q and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T prop: implies:  Q subtype_rel: A ⊆B rev_implies:  Q so_lambda: λ2x.t[x] nat_plus: + int_upper: {i...} le: A ≤ B guard: {T} uimplies: supposing a so_apply: x[s] exists: x:A. B[x] rsub: y rminus: -(x) rnonneg2: rnonneg2(x) decidable: Dec(P) or: P ∨ Q false: False uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top
Lemmas referenced :  subtract-is-int-iff false_wf int_formula_prop_wf int_term_value_minus_lemma int_term_value_add_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermMinus_wf itermAdd_wf itermSubtract_wf itermVar_wf itermConstant_wf itermMultiply_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt minus-is-int-iff add-is-int-iff multiply-is-int-iff decidable__le nat_plus_properties int_upper_properties radd-bdd-diff rminus_wf radd_wf rnonneg2_functionality real_wf less_than_wf less_than_transitivity1 subtract_wf le_wf int_upper_wf exists_wf nat_plus_wf all_wf rnonneg2_wf iff_wf rnonneg_wf regular-int-seq_wf rsub_wf rnonneg-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution setElimination thin rename cut addLevel productElimination independent_pairFormation impliesFunctionality lemma_by_obid isectElimination hypothesis dependent_set_memberEquality hypothesisEquality natural_numberEquality independent_functionElimination applyEquality because_Cache sqequalRule lambdaEquality multiplyEquality minusEquality independent_isectElimination dependent_functionElimination addEquality dependent_pairFormation unionElimination pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp baseApply closedConclusion baseClosed int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll

Latex:
\mforall{}x,y:\mBbbR{}.    (x  \mleq{}  y  \mLeftarrow{}{}\mRightarrow{}  \mforall{}n:\mBbbN{}\msupplus{}.  \mexists{}N:\mBbbN{}\msupplus{}.  \mforall{}m:\{N...\}.  (((-2)  *  m)  \mleq{}  (n  *  ((y  m)  -  x  m))))



Date html generated: 2016_05_18-AM-07_14_59
Last ObjectModification: 2016_01_17-AM-01_55_34

Theory : reals


Home Index