Nuprl Lemma : rleq-iff
∀x,y:ℝ.  (x ≤ y 
⇐⇒ ∀n:ℕ+. ∃N:ℕ+. ∀m:{N...}. (((-2) * m) ≤ (n * ((y m) - x m))))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
real: ℝ
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
multiply: n * m
, 
subtract: n - m
, 
minus: -n
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
real: ℝ
, 
rleq: x ≤ y
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
int_upper: {i...}
, 
le: A ≤ B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
rsub: x - y
, 
rminus: -(x)
, 
rnonneg2: rnonneg2(x)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
subtract-is-int-iff, 
false_wf, 
int_formula_prop_wf, 
int_term_value_minus_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermMinus_wf, 
itermAdd_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermConstant_wf, 
itermMultiply_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
minus-is-int-iff, 
add-is-int-iff, 
multiply-is-int-iff, 
decidable__le, 
nat_plus_properties, 
int_upper_properties, 
radd-bdd-diff, 
rminus_wf, 
radd_wf, 
rnonneg2_functionality, 
real_wf, 
less_than_wf, 
less_than_transitivity1, 
subtract_wf, 
le_wf, 
int_upper_wf, 
exists_wf, 
nat_plus_wf, 
all_wf, 
rnonneg2_wf, 
iff_wf, 
rnonneg_wf, 
regular-int-seq_wf, 
rsub_wf, 
rnonneg-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
addLevel, 
productElimination, 
independent_pairFormation, 
impliesFunctionality, 
lemma_by_obid, 
isectElimination, 
hypothesis, 
dependent_set_memberEquality, 
hypothesisEquality, 
natural_numberEquality, 
independent_functionElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
multiplyEquality, 
minusEquality, 
independent_isectElimination, 
dependent_functionElimination, 
addEquality, 
dependent_pairFormation, 
unionElimination, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll
Latex:
\mforall{}x,y:\mBbbR{}.    (x  \mleq{}  y  \mLeftarrow{}{}\mRightarrow{}  \mforall{}n:\mBbbN{}\msupplus{}.  \mexists{}N:\mBbbN{}\msupplus{}.  \mforall{}m:\{N...\}.  (((-2)  *  m)  \mleq{}  (n  *  ((y  m)  -  x  m))))
Date html generated:
2016_05_18-AM-07_14_59
Last ObjectModification:
2016_01_17-AM-01_55_34
Theory : reals
Home
Index