Step
*
of Lemma
rleq-iff
∀x,y:ℝ. (x ≤ y
⇐⇒ ∀n:ℕ+. ∃N:ℕ+. ∀m:{N...}. (((-2) * m) ≤ (n * ((y m) - x m))))
BY
{ (RepeatFor 2 ((D 0 THENA Auto)) THEN D -1 THEN D 1 THEN Unfold `rleq` 0 THEN (RWO "rnonneg-iff" 0 THENA Auto)) }
1
1. x : ℕ+ ⟶ ℤ@i
2. [%2] : regular-seq(x)@i
3. y : ℕ+ ⟶ ℤ@i
4. [%1] : regular-seq(y)@i
⊢ rnonneg2(y - x)
⇐⇒ ∀n:ℕ+. ∃N:ℕ+. ∀m:{N...}. (((-2) * m) ≤ (n * ((y m) - x m)))
Latex:
Latex:
\mforall{}x,y:\mBbbR{}. (x \mleq{} y \mLeftarrow{}{}\mRightarrow{} \mforall{}n:\mBbbN{}\msupplus{}. \mexists{}N:\mBbbN{}\msupplus{}. \mforall{}m:\{N...\}. (((-2) * m) \mleq{} (n * ((y m) - x m))))
By
Latex:
(RepeatFor 2 ((D 0 THENA Auto))
THEN D -1
THEN D 1
THEN Unfold `rleq` 0
THEN (RWO "rnonneg-iff" 0 THENA Auto))
Home
Index