Nuprl Lemma : radd-bdd-diff

a,b:ℝ.  bdd-diff(a b;λn.((a n) (b n)))


Proof




Definitions occuring in Statement :  radd: b real: bdd-diff: bdd-diff(f;g) all: x:A. B[x] apply: a lambda: λx.A[x] add: m
Definitions unfolded in proof :  all: x:A. B[x] radd: b member: t ∈ T uall: [x:A]. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: subtype_rel: A ⊆B top: Top real: bdd-diff: bdd-diff(f;g) exists: x:A. B[x] nat: le: A ≤ B false: False not: ¬A implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] absval: |i| iff: ⇐⇒ Q rev_implies:  Q uimplies: supposing a guard: {T} subtract: m
Lemmas referenced :  zero-mul add-mul-special add-swap zero-add minus-one-mul minus-add add-associates iff_weakening_equal reg-seq-list-add-as-l_sum true_wf squash_wf bdd-diff_weakening accelerate-bdd-diff bdd-diff_functionality nat_wf l_sum_nil_lemma l_sum_cons_lemma map_nil_lemma map_cons_lemma subtract_wf absval_wf all_wf le_wf false_wf length_wf regular-int-seq_wf nat_plus_wf length_of_nil_lemma length_of_cons_lemma nil_wf cons_wf reg-seq-list-add_wf less_than_wf accelerate_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation introduction imageMemberEquality hypothesisEquality baseClosed because_Cache applyEquality lambdaEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality setEquality functionEquality intEquality setElimination rename addEquality dependent_pairFormation multiplyEquality minusEquality independent_functionElimination productElimination imageElimination equalityTransitivity equalitySymmetry universeEquality independent_isectElimination

Latex:
\mforall{}a,b:\mBbbR{}.    bdd-diff(a  +  b;\mlambda{}n.((a  n)  +  (b  n)))



Date html generated: 2016_05_18-AM-06_48_42
Last ObjectModification: 2016_01_17-AM-01_45_33

Theory : reals


Home Index