Step
*
1
1
2
2
1
1
1
of Lemma
unit-balls-homeomorphic+
1. n : ℕ+
2. λi.r0 ∈ ℝ^n
3. {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1}  ⊆r {p:ℝ^n| ||p|| ≤ r1} 
4. {p:ℝ^n| ||p|| ≤ r1}  ⊆r {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1} 
5. ∀p:ℝ^n. (r0 < ||p|| 
⇐⇒ r0 < mdist(max-metric(n);λi.r0;p))
6. g : ℝ^n ⟶ ℝ^n
7. ∀p:ℝ^n. (req-vec(n;p;λi.r0) 
⇒ g p ≡ λi.r0)
8. ∀p:{p:ℝ^n| r0 < mdist(max-metric(n);λi.r0;p)} . g p ≡ (λp.(||p||/mdist(max-metric(n);p;λi.r0))*p) p
9. g ∈ {p:ℝ^n| ||p|| ≤ r1}  ⟶ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1} 
10. ∀x1,x2:ℝ^n.  (x1 ≡ x2 
⇒ g x1 ≡ g x2)
11. h : ℝ^n ⟶ ℝ^n
12. ∀p:ℝ^n. (req-vec(n;p;λi.r0) 
⇒ h p ≡ λi.r0)
13. ∀p:{p:ℝ^n| r0 < ||p||} . h p ≡ (λp.(mdist(max-metric(n);λi.r0;p)/||p||)*p) p
14. h ∈ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1}  ⟶ {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1} 
15. h:FUN(ℝ^n;ℝ^n)
16. y : {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1} 
17. ¬(r0 < ||y||)
18. ||y|| ≤ r0
19. ||y|| = r0
20. req-vec(n;y;λi.r0)
21. h y ≡ λi.r0
22. λi.r0 ∈ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1} 
23. h (λi.r0) ≡ λi.r0
24. λi.r0 ∈ {p:ℝ^n| ||p|| ≤ r1} 
25. g (h y) ≡ g (λi.r0)
⊢ g (λi.r0) ≡ y
BY
{ ((Assert req-vec(n;λi.r0;y) BY EAuto 1) THEN RWO "7" 0 THEN Auto) }
1
.....rewrite subgoal..... 
1. n : ℕ+
2. λi.r0 ∈ ℝ^n
3. {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1}  ⊆r {p:ℝ^n| ||p|| ≤ r1} 
4. {p:ℝ^n| ||p|| ≤ r1}  ⊆r {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1} 
5. ∀p:ℝ^n. (r0 < ||p|| 
⇐⇒ r0 < mdist(max-metric(n);λi.r0;p))
6. g : ℝ^n ⟶ ℝ^n
7. ∀p:ℝ^n. (req-vec(n;p;λi.r0) 
⇒ g p ≡ λi.r0)
8. ∀p:{p:ℝ^n| r0 < mdist(max-metric(n);λi.r0;p)} . g p ≡ (λp.(||p||/mdist(max-metric(n);p;λi.r0))*p) p
9. g ∈ {p:ℝ^n| ||p|| ≤ r1}  ⟶ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1} 
10. ∀x1,x2:ℝ^n.  (x1 ≡ x2 
⇒ g x1 ≡ g x2)
11. h : ℝ^n ⟶ ℝ^n
12. ∀p:ℝ^n. (req-vec(n;p;λi.r0) 
⇒ h p ≡ λi.r0)
13. ∀p:{p:ℝ^n| r0 < ||p||} . h p ≡ (λp.(mdist(max-metric(n);λi.r0;p)/||p||)*p) p
14. h ∈ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1}  ⟶ {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1} 
15. h:FUN(ℝ^n;ℝ^n)
16. y : {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1} 
17. ¬(r0 < ||y||)
18. ||y|| ≤ r0
19. ||y|| = r0
20. req-vec(n;y;λi.r0)
21. h y ≡ λi.r0
22. λi.r0 ∈ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1} 
23. h (λi.r0) ≡ λi.r0
24. λi.r0 ∈ {p:ℝ^n| ||p|| ≤ r1} 
25. g (h y) ≡ g (λi.r0)
26. req-vec(n;λi.r0;y)
⊢ req-vec(n;λi.r0;λi.r0)
2
1. n : ℕ+
2. λi.r0 ∈ ℝ^n
3. {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1}  ⊆r {p:ℝ^n| ||p|| ≤ r1} 
4. {p:ℝ^n| ||p|| ≤ r1}  ⊆r {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1} 
5. ∀p:ℝ^n. (r0 < ||p|| 
⇐⇒ r0 < mdist(max-metric(n);λi.r0;p))
6. g : ℝ^n ⟶ ℝ^n
7. ∀p:ℝ^n. (req-vec(n;p;λi.r0) 
⇒ g p ≡ λi.r0)
8. ∀p:{p:ℝ^n| r0 < mdist(max-metric(n);λi.r0;p)} . g p ≡ (λp.(||p||/mdist(max-metric(n);p;λi.r0))*p) p
9. g ∈ {p:ℝ^n| ||p|| ≤ r1}  ⟶ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1} 
10. ∀x1,x2:ℝ^n.  (x1 ≡ x2 
⇒ g x1 ≡ g x2)
11. h : ℝ^n ⟶ ℝ^n
12. ∀p:ℝ^n. (req-vec(n;p;λi.r0) 
⇒ h p ≡ λi.r0)
13. ∀p:{p:ℝ^n| r0 < ||p||} . h p ≡ (λp.(mdist(max-metric(n);λi.r0;p)/||p||)*p) p
14. h ∈ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1}  ⟶ {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1} 
15. h:FUN(ℝ^n;ℝ^n)
16. y : {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1} 
17. ¬(r0 < ||y||)
18. ||y|| ≤ r0
19. ||y|| = r0
20. req-vec(n;y;λi.r0)
21. h y ≡ λi.r0
22. λi.r0 ∈ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1} 
23. h (λi.r0) ≡ λi.r0
24. λi.r0 ∈ {p:ℝ^n| ||p|| ≤ r1} 
25. g (h y) ≡ g (λi.r0)
26. req-vec(n;λi.r0;y)
⊢ λi.r0 ≡ y
Latex:
Latex:
1.  n  :  \mBbbN{}\msupplus{}
2.  \mlambda{}i.r0  \mmember{}  \mBbbR{}\^{}n
3.  \{q:\mBbbR{}\^{}n|  mdist(rn-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\}    \msubseteq{}r  \{p:\mBbbR{}\^{}n|  ||p||  \mleq{}  r1\} 
4.  \{p:\mBbbR{}\^{}n|  ||p||  \mleq{}  r1\}    \msubseteq{}r  \{q:\mBbbR{}\^{}n|  mdist(rn-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\} 
5.  \mforall{}p:\mBbbR{}\^{}n.  (r0  <  ||p||  \mLeftarrow{}{}\mRightarrow{}  r0  <  mdist(max-metric(n);\mlambda{}i.r0;p))
6.  g  :  \mBbbR{}\^{}n  {}\mrightarrow{}  \mBbbR{}\^{}n
7.  \mforall{}p:\mBbbR{}\^{}n.  (req-vec(n;p;\mlambda{}i.r0)  {}\mRightarrow{}  g  p  \mequiv{}  \mlambda{}i.r0)
8.  \mforall{}p:\{p:\mBbbR{}\^{}n|  r0  <  mdist(max-metric(n);\mlambda{}i.r0;p)\} 
          g  p  \mequiv{}  (\mlambda{}p.(||p||/mdist(max-metric(n);p;\mlambda{}i.r0))*p)  p
9.  g  \mmember{}  \{p:\mBbbR{}\^{}n|  ||p||  \mleq{}  r1\}    {}\mrightarrow{}  \{q:\mBbbR{}\^{}n|  mdist(max-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\} 
10.  \mforall{}x1,x2:\mBbbR{}\^{}n.    (x1  \mequiv{}  x2  {}\mRightarrow{}  g  x1  \mequiv{}  g  x2)
11.  h  :  \mBbbR{}\^{}n  {}\mrightarrow{}  \mBbbR{}\^{}n
12.  \mforall{}p:\mBbbR{}\^{}n.  (req-vec(n;p;\mlambda{}i.r0)  {}\mRightarrow{}  h  p  \mequiv{}  \mlambda{}i.r0)
13.  \mforall{}p:\{p:\mBbbR{}\^{}n|  r0  <  ||p||\}  .  h  p  \mequiv{}  (\mlambda{}p.(mdist(max-metric(n);\mlambda{}i.r0;p)/||p||)*p)  p
14.  h  \mmember{}  \{q:\mBbbR{}\^{}n|  mdist(max-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\}    {}\mrightarrow{}  \{q:\mBbbR{}\^{}n|  mdist(rn-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\} 
15.  h:FUN(\mBbbR{}\^{}n;\mBbbR{}\^{}n)
16.  y  :  \{q:\mBbbR{}\^{}n|  mdist(max-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\} 
17.  \mneg{}(r0  <  ||y||)
18.  ||y||  \mleq{}  r0
19.  ||y||  =  r0
20.  req-vec(n;y;\mlambda{}i.r0)
21.  h  y  \mequiv{}  \mlambda{}i.r0
22.  \mlambda{}i.r0  \mmember{}  \{q:\mBbbR{}\^{}n|  mdist(max-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\} 
23.  h  (\mlambda{}i.r0)  \mequiv{}  \mlambda{}i.r0
24.  \mlambda{}i.r0  \mmember{}  \{p:\mBbbR{}\^{}n|  ||p||  \mleq{}  r1\} 
25.  g  (h  y)  \mequiv{}  g  (\mlambda{}i.r0)
\mvdash{}  g  (\mlambda{}i.r0)  \mequiv{}  y
By
Latex:
((Assert  req-vec(n;\mlambda{}i.r0;y)  BY  EAuto  1)  THEN  RWO  "7"  0  THEN  Auto)
Home
Index