Step
*
of Lemma
IVT-deriv-seq-test
∀a:ℝ. ∀b:{b:ℝ| a < b} . ∀f:[a, b] ⟶ℝ.
∀c:ℝ
((f(a) ≤ c)
⇒ (c ≤ f(b))
⇒ (∀u,v:{v:ℝ| v ∈ [a, b]} .
((u < v)
⇒ (∃k:ℕ
∃F:ℕk + 1 ⟶ [a, b] ⟶ℝ
(finite-deriv-seq([a, b];k;i,x.F[i;x])
∧ (∀x:{x:ℝ| x ∈ [a, b]} . (F[0;x] = (f(x) - c)))
∧ (∃z:{z:ℝ| z ∈ [u, v]} . (r0 < Σ{|F[i;z]| | 0≤i≤k}))))))
⇒ (∃x:ℝ [((x ∈ [a, b]) ∧ (f(x) = c))]))
supposing ∀x,y:{x:ℝ| x ∈ [a, b]} . ((x = y)
⇒ (f[x] = f[y]))
BY
{ (Auto
THEN Try (((All Reduce THEN Auto) THEN DSetVars THEN Unhide THEN Complete (Auto)))
THEN BLemma `IVT-locally-non-constant`
THEN Auto
THEN Try ((BLemma `locally-non-constant-deriv-seq-test` THEN Auto))) }
Latex:
Latex:
\mforall{}a:\mBbbR{}. \mforall{}b:\{b:\mBbbR{}| a < b\} . \mforall{}f:[a, b] {}\mrightarrow{}\mBbbR{}.
\mforall{}c:\mBbbR{}
((f(a) \mleq{} c)
{}\mRightarrow{} (c \mleq{} f(b))
{}\mRightarrow{} (\mforall{}u,v:\{v:\mBbbR{}| v \mmember{} [a, b]\} .
((u < v)
{}\mRightarrow{} (\mexists{}k:\mBbbN{}
\mexists{}F:\mBbbN{}k + 1 {}\mrightarrow{} [a, b] {}\mrightarrow{}\mBbbR{}
(finite-deriv-seq([a, b];k;i,x.F[i;x])
\mwedge{} (\mforall{}x:\{x:\mBbbR{}| x \mmember{} [a, b]\} . (F[0;x] = (f(x) - c)))
\mwedge{} (\mexists{}z:\{z:\mBbbR{}| z \mmember{} [u, v]\} . (r0 < \mSigma{}\{|F[i;z]| | 0\mleq{}i\mleq{}k\}))))))
{}\mRightarrow{} (\mexists{}x:\mBbbR{} [((x \mmember{} [a, b]) \mwedge{} (f(x) = c))]))
supposing \mforall{}x,y:\{x:\mBbbR{}| x \mmember{} [a, b]\} . ((x = y) {}\mRightarrow{} (f[x] = f[y]))
By
Latex:
(Auto
THEN Try (((All Reduce THEN Auto) THEN DSetVars THEN Unhide THEN Complete (Auto)))
THEN BLemma `IVT-locally-non-constant`
THEN Auto
THEN Try ((BLemma `locally-non-constant-deriv-seq-test` THEN Auto)))
Home
Index