Nuprl Lemma : IVT-deriv-seq-test

a:ℝ. ∀b:{b:ℝa < b} . ∀f:[a, b] ⟶ℝ.
  ∀c:ℝ
    ((f(a) ≤ c)
     (c ≤ f(b))
     (∀u,v:{v:ℝv ∈ [a, b]} .
          ((u < v)
           (∃k:ℕ
               ∃F:ℕ1 ⟶ [a, b] ⟶ℝ
                (finite-deriv-seq([a, b];k;i,x.F[i;x])
                ∧ (∀x:{x:ℝx ∈ [a, b]} (F[0;x] (f(x) c)))
                ∧ (∃z:{z:ℝz ∈ [u, v]} (r0 < Σ{|F[i;z]| 0≤i≤k}))))))
     (∃x:ℝ [((x ∈ [a, b]) ∧ (f(x) c))])) 
  supposing ∀x,y:{x:ℝx ∈ [a, b]} .  ((x y)  (f[x] f[y]))


Proof




Definitions occuring in Statement :  finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x]) r-ap: f(x) rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I rsum: Σ{x[k] n≤k≤m} rleq: x ≤ y rless: x < y rabs: |x| rsub: y req: y int-to-real: r(n) real: int_seg: {i..j-} nat: uimplies: supposing a so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T implies:  Q uall: [x:A]. B[x] so_apply: x[s] rfun: I ⟶ℝ prop: exists: x:A. B[x] nat: and: P ∧ Q so_lambda: λ2y.t[x; y] label: ...$L... t so_apply: x[s1;s2] subtype_rel: A ⊆B int_seg: {i..j-} rless: x < y sq_exists: x:A [B[x]] nat_plus: + ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top false: False i-member: r ∈ I rccint: [l, u] sq_stable: SqStable(P) squash: T so_lambda: λ2x.t[x] cand: c∧ B guard: {T}
Lemmas referenced :  req_witness IVT-locally-non-constant locally-non-constant-deriv-seq-test i-member_wf rccint_wf rless_wf istype-nat int_seg_wf finite-deriv-seq_wf subtype_rel_self real_wf req_wf nat_properties nat_plus_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformand_wf intformless_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_var_lemma istype-le istype-less_than rsub_wf r-ap_wf member_rccint_lemma sq_stable__rleq int-to-real_wf rsum_wf rabs_wf rleq_transitivity rleq_wf rleq_weakening_rless rleq_weakening_equal rfun_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination applyEquality because_Cache independent_functionElimination hypothesis functionIsTypeImplies inhabitedIsType rename independent_isectElimination functionIsType setIsType universeIsType setElimination productIsType natural_numberEquality addEquality functionEquality setEquality dependent_set_memberEquality_alt independent_pairFormation unionElimination approximateComputation dependent_pairFormation_alt isect_memberEquality_alt voidElimination int_eqEquality productElimination imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  <  b\}  .  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.
    \mforall{}c:\mBbbR{}
        ((f(a)  \mleq{}  c)
        {}\mRightarrow{}  (c  \mleq{}  f(b))
        {}\mRightarrow{}  (\mforall{}u,v:\{v:\mBbbR{}|  v  \mmember{}  [a,  b]\}  .
                    ((u  <  v)
                    {}\mRightarrow{}  (\mexists{}k:\mBbbN{}
                              \mexists{}F:\mBbbN{}k  +  1  {}\mrightarrow{}  [a,  b]  {}\mrightarrow{}\mBbbR{}
                                (finite-deriv-seq([a,  b];k;i,x.F[i;x])
                                \mwedge{}  (\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .  (F[0;x]  =  (f(x)  -  c)))
                                \mwedge{}  (\mexists{}z:\{z:\mBbbR{}|  z  \mmember{}  [u,  v]\}  .  (r0  <  \mSigma{}\{|F[i;z]|  |  0\mleq{}i\mleq{}k\}))))))
        {}\mRightarrow{}  (\mexists{}x:\mBbbR{}  [((x  \mmember{}  [a,  b])  \mwedge{}  (f(x)  =  c))])) 
    supposing  \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y]))



Date html generated: 2019_10_30-AM-09_12_42
Last ObjectModification: 2019_04_03-PM-08_35_58

Theory : reals


Home Index