Nuprl Lemma : locally-non-constant-deriv-seq-test

a,b:ℝ. ∀f:[a, b] ⟶ℝ. ∀c:ℝ.
  ((∀u,v:{v:ℝv ∈ [a, b]} .
      ((u < v)
       (∃k:ℕ
           ∃F:ℕ1 ⟶ [a, b] ⟶ℝ
            (finite-deriv-seq([a, b];k;i,x.F[i;x])
            ∧ (∀x:{x:ℝx ∈ [a, b]} (F[0;x] (f(x) c)))
            ∧ (∃z:{z:ℝz ∈ [u, v]} (r0 < Σ{|F[i;z]| 0≤i≤k}))))))
   locally-non-constant(f;a;b;c))


Proof




Definitions occuring in Statement :  finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x]) locally-non-constant: locally-non-constant(f;a;b;c) r-ap: f(x) rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I rsum: Σ{x[k] n≤k≤m} rless: x < y rabs: |x| rsub: y req: y int-to-real: r(n) real: int_seg: {i..j-} nat: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: exists: x:A. B[x] nat: and: P ∧ Q so_lambda: λ2y.t[x; y] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s1;s2] subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A rless: x < y sq_exists: x:A [B[x]] nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top i-member: r ∈ I rccint: [l, u] sq_stable: SqStable(P) squash: T so_lambda: λ2x.t[x] so_apply: x[s] r-ap: f(x) locally-non-constant: locally-non-constant(f;a;b;c) cand: c∧ B rneq: x ≠ y guard: {T} iff: ⇐⇒ Q uiff: uiff(P;Q) req_int_terms: t1 ≡ t2
Lemmas referenced :  i-member_wf rccint_wf rless_wf istype-nat int_seg_wf finite-deriv-seq_wf subtype_rel_self real_wf req_wf istype-false nat_properties nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf istype-le istype-less_than rsub_wf r-ap_wf member_rccint_lemma sq_stable__rleq int-to-real_wf rsum_wf rabs_wf rfun_wf locally-non-zero-finite-deriv-seq radd-preserves-rless rleq_transitivity rleq_wf rneq_wf radd_wf itermSubtract_wf rless_functionality req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalRule functionIsType setIsType inhabitedIsType hypothesisEquality universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis because_Cache setElimination rename productIsType natural_numberEquality addEquality lambdaEquality_alt applyEquality functionEquality setEquality dependent_set_memberEquality_alt independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination productElimination imageMemberEquality baseClosed imageElimination inlFormation_alt inrFormation_alt equalityTransitivity equalitySymmetry

Latex:
\mforall{}a,b:\mBbbR{}.  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  \mforall{}c:\mBbbR{}.
    ((\mforall{}u,v:\{v:\mBbbR{}|  v  \mmember{}  [a,  b]\}  .
            ((u  <  v)
            {}\mRightarrow{}  (\mexists{}k:\mBbbN{}
                      \mexists{}F:\mBbbN{}k  +  1  {}\mrightarrow{}  [a,  b]  {}\mrightarrow{}\mBbbR{}
                        (finite-deriv-seq([a,  b];k;i,x.F[i;x])
                        \mwedge{}  (\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .  (F[0;x]  =  (f(x)  -  c)))
                        \mwedge{}  (\mexists{}z:\{z:\mBbbR{}|  z  \mmember{}  [u,  v]\}  .  (r0  <  \mSigma{}\{|F[i;z]|  |  0\mleq{}i\mleq{}k\}))))))
    {}\mRightarrow{}  locally-non-constant(f;a;b;c))



Date html generated: 2019_10_30-AM-09_11_01
Last ObjectModification: 2018_11_08-PM-01_20_51

Theory : reals


Home Index