Nuprl Lemma : locally-non-zero-finite-deriv-seq
∀a,b:ℝ. ∀f:[a, b] ⟶ℝ.
  ((∀u,v:{v:ℝ| v ∈ [a, b]} .
      ((u < v)
      
⇒ (∃k:ℕ
           ∃F:ℕk + 1 ⟶ [a, b] ⟶ℝ
            (finite-deriv-seq([a, b];k;i,x.F[i;x])
            ∧ (∀x:{x:ℝ| x ∈ [a, b]} . (F[0;x] = f(x)))
            ∧ (∃z:{z:ℝ| z ∈ [u, v]} . (r0 < Σ{|F[i;z]| | 0≤i≤k}))))))
  
⇒ locally-non-constant(f;a;b;r0))
Proof
Definitions occuring in Statement : 
finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x])
, 
locally-non-constant: locally-non-constant(f;a;b;c)
, 
r-ap: f(x)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rsum: Σ{x[k] | n≤k≤m}
, 
rless: x < y
, 
rabs: |x|
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
locally-non-constant: locally-non-constant(f;a;b;c)
, 
member: t ∈ T
, 
top: Top
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
guard: {T}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
so_lambda: λ2x y.t[x; y]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
sq_stable: SqStable(P)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
real: ℝ
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x])
, 
r-ap: f(x)
, 
rfun-eq: rfun-eq(I;f;g)
, 
subinterval: I ⊆ J 
Lemmas referenced : 
member_rccint_lemma, 
istype-void, 
rless_transitivity1, 
rleq_weakening_rless, 
rleq_wf, 
rless_transitivity2, 
int_seg_wf, 
finite-deriv-seq_wf, 
rccint_wf, 
istype-false, 
istype-le, 
subtype_rel_self, 
real_wf, 
i-member_wf, 
req_wf, 
istype-less_than, 
r-ap_wf, 
sq_stable__rleq, 
rless_wf, 
int-to-real_wf, 
rsum_wf, 
rabs_wf, 
rleq_transitivity, 
sq_stable__less_than, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
decidable__lt, 
itermAdd_wf, 
int_term_value_add_lemma, 
rneq_wf, 
primrec-wf2, 
all_wf, 
exists_wf, 
istype-nat, 
nat_properties, 
rfun_wf, 
sq_stable__i-member, 
rless_functionality, 
req_weakening, 
rsum_single, 
rabs_functionality, 
rabs-positive-iff, 
radd_wf, 
radd-positive-implies, 
rsum-split-first, 
add-member-int_seg2, 
subtract-add-cancel, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
add-subtract-cancel, 
req_witness, 
rsum-shift, 
zero-add, 
derivative_functionality, 
small-reciprocal-rneq-zero, 
non-zero-deriv-non-constant, 
rfun_subtype_3, 
derivative_functionality_wrt_subinterval, 
subtype_rel_sets_simple
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
sqequalRule, 
introduction, 
extract_by_obid, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
hypothesisEquality, 
independent_functionElimination, 
independent_isectElimination, 
isectElimination, 
dependent_set_memberEquality_alt, 
because_Cache, 
productIsType, 
universeIsType, 
productElimination, 
functionIsType, 
natural_numberEquality, 
addEquality, 
lambdaEquality_alt, 
applyEquality, 
functionEquality, 
setEquality, 
setIsType, 
inhabitedIsType, 
imageMemberEquality, 
baseClosed, 
setElimination, 
rename, 
imageElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
productEquality, 
closedConclusion, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}a,b:\mBbbR{}.  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}u,v:\{v:\mBbbR{}|  v  \mmember{}  [a,  b]\}  .
            ((u  <  v)
            {}\mRightarrow{}  (\mexists{}k:\mBbbN{}
                      \mexists{}F:\mBbbN{}k  +  1  {}\mrightarrow{}  [a,  b]  {}\mrightarrow{}\mBbbR{}
                        (finite-deriv-seq([a,  b];k;i,x.F[i;x])
                        \mwedge{}  (\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .  (F[0;x]  =  f(x)))
                        \mwedge{}  (\mexists{}z:\{z:\mBbbR{}|  z  \mmember{}  [u,  v]\}  .  (r0  <  \mSigma{}\{|F[i;z]|  |  0\mleq{}i\mleq{}k\}))))))
    {}\mRightarrow{}  locally-non-constant(f;a;b;r0))
Date html generated:
2019_10_30-AM-09_10_28
Last ObjectModification:
2018_11_12-PM-04_18_57
Theory : reals
Home
Index