Nuprl Lemma : locally-non-zero-finite-deriv-seq

a,b:ℝ. ∀f:[a, b] ⟶ℝ.
  ((∀u,v:{v:ℝv ∈ [a, b]} .
      ((u < v)
       (∃k:ℕ
           ∃F:ℕ1 ⟶ [a, b] ⟶ℝ
            (finite-deriv-seq([a, b];k;i,x.F[i;x])
            ∧ (∀x:{x:ℝx ∈ [a, b]} (F[0;x] f(x)))
            ∧ (∃z:{z:ℝz ∈ [u, v]} (r0 < Σ{|F[i;z]| 0≤i≤k}))))))
   locally-non-constant(f;a;b;r0))


Proof




Definitions occuring in Statement :  finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x]) locally-non-constant: locally-non-constant(f;a;b;c) r-ap: f(x) rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I rsum: Σ{x[k] n≤k≤m} rless: x < y rabs: |x| req: y int-to-real: r(n) real: int_seg: {i..j-} nat: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q locally-non-constant: locally-non-constant(f;a;b;c) member: t ∈ T top: Top and: P ∧ Q cand: c∧ B guard: {T} uimplies: supposing a uall: [x:A]. B[x] prop: exists: x:A. B[x] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A so_lambda: λ2y.t[x; y] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s1;s2] subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T true: True i-member: r ∈ I rccint: [l, u] sq_stable: SqStable(P) so_lambda: λ2x.t[x] so_apply: x[s] rless: x < y sq_exists: x:A [B[x]] real: nat_plus: + decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x]) r-ap: f(x) rfun-eq: rfun-eq(I;f;g) subinterval: I ⊆ 
Lemmas referenced :  member_rccint_lemma istype-void rless_transitivity1 rleq_weakening_rless rleq_wf rless_transitivity2 int_seg_wf finite-deriv-seq_wf rccint_wf istype-false istype-le subtype_rel_self real_wf i-member_wf req_wf istype-less_than r-ap_wf sq_stable__rleq rless_wf int-to-real_wf rsum_wf rabs_wf rleq_transitivity sq_stable__less_than nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt itermAdd_wf int_term_value_add_lemma rneq_wf primrec-wf2 all_wf exists_wf istype-nat nat_properties rfun_wf sq_stable__i-member rless_functionality req_weakening rsum_single rabs_functionality rabs-positive-iff radd_wf radd-positive-implies rsum-split-first add-member-int_seg2 subtract-add-cancel subtract_wf itermSubtract_wf int_term_value_subtract_lemma add-subtract-cancel req_witness rsum-shift zero-add derivative_functionality small-reciprocal-rneq-zero non-zero-deriv-non-constant rfun_subtype_3 derivative_functionality_wrt_subinterval subtype_rel_sets_simple
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis sqequalHypSubstitution dependent_functionElimination thin sqequalRule introduction extract_by_obid isect_memberEquality_alt voidElimination independent_pairFormation hypothesisEquality independent_functionElimination independent_isectElimination isectElimination dependent_set_memberEquality_alt because_Cache productIsType universeIsType productElimination functionIsType natural_numberEquality addEquality lambdaEquality_alt applyEquality functionEquality setEquality setIsType inhabitedIsType imageMemberEquality baseClosed setElimination rename imageElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality productEquality closedConclusion equalityTransitivity equalitySymmetry

Latex:
\mforall{}a,b:\mBbbR{}.  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}u,v:\{v:\mBbbR{}|  v  \mmember{}  [a,  b]\}  .
            ((u  <  v)
            {}\mRightarrow{}  (\mexists{}k:\mBbbN{}
                      \mexists{}F:\mBbbN{}k  +  1  {}\mrightarrow{}  [a,  b]  {}\mrightarrow{}\mBbbR{}
                        (finite-deriv-seq([a,  b];k;i,x.F[i;x])
                        \mwedge{}  (\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .  (F[0;x]  =  f(x)))
                        \mwedge{}  (\mexists{}z:\{z:\mBbbR{}|  z  \mmember{}  [u,  v]\}  .  (r0  <  \mSigma{}\{|F[i;z]|  |  0\mleq{}i\mleq{}k\}))))))
    {}\mRightarrow{}  locally-non-constant(f;a;b;r0))



Date html generated: 2019_10_30-AM-09_10_28
Last ObjectModification: 2018_11_12-PM-04_18_57

Theory : reals


Home Index