Nuprl Lemma : derivative_functionality

[I:Interval]. ∀[f1,f2,g1,g2:I ⟶ℝ].
  (rfun-eq(I;f1;f2)  rfun-eq(I;g1;g2)  λx.g1[x] d(f1[x])/dx on  λx.g2[x] d(f2[x])/dx on I)


Proof




Definitions occuring in Statement :  derivative: λz.g[z] d(f[x])/dx on I rfun-eq: rfun-eq(I;f;g) rfun: I ⟶ℝ interval: Interval uall: [x:A]. B[x] so_apply: x[s] implies:  Q
Definitions unfolded in proof :  top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) sq_exists: x:{A| B[x]} rless: x < y rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q guard: {T} rneq: x ≠ y uimplies: supposing a nat_plus: + all: x:A. B[x] and: P ∧ Q so_apply: x[s] rfun: I ⟶ℝ label: ...$L... t so_lambda: λ2x.t[x] prop: member: t ∈ T implies:  Q uall: [x:A]. B[x] derivative: λz.g[z] d(f[x])/dx on I rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rfun-eq: rfun-eq(I;f;g) r-ap: f(x) uiff: uiff(P;Q)
Lemmas referenced :  rmul_functionality rsub_functionality rabs_functionality req_weakening rleq_functionality r-ap_wf rleq_weakening_equal rleq_functionality_wrt_implies icompact_wf nat_plus_wf less_than_wf all_wf derivative_wf real_wf i-member_wf rfun-eq_wf rfun_wf interval_wf rleq_wf rabs_wf rsub_wf i-approx_wf i-member-approx rmul_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf
Rules used in proof :  computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation unionElimination inrFormation independent_isectElimination natural_numberEquality dependent_set_memberEquality rename setElimination independent_functionElimination dependent_functionElimination promote_hyp productElimination independent_pairFormation because_Cache hypothesis setEquality applyEquality lambdaEquality sqequalRule hypothesisEquality thin isectElimination sqequalHypSubstitution lemma_by_obid cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction productEquality functionEquality

Latex:
\mforall{}[I:Interval].  \mforall{}[f1,f2,g1,g2:I  {}\mrightarrow{}\mBbbR{}].
    (rfun-eq(I;f1;f2)
    {}\mRightarrow{}  rfun-eq(I;g1;g2)
    {}\mRightarrow{}  \mlambda{}x.g1[x]  =  d(f1[x])/dx  on  I
    {}\mRightarrow{}  \mlambda{}x.g2[x]  =  d(f2[x])/dx  on  I)



Date html generated: 2016_05_18-AM-09_59_27
Last ObjectModification: 2016_01_17-AM-00_42_25

Theory : reals


Home Index