Nuprl Lemma : i-approx_wf

[n:ℕ+]. ∀[I:Interval].  (i-approx(I;n) ∈ Interval)


Proof




Definitions occuring in Statement :  i-approx: i-approx(I;n) interval: Interval nat_plus: + uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T i-approx: i-approx(I;n) interval: Interval nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop:
Lemmas referenced :  nat_plus_wf interval_wf radd_wf rless_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties rless-int int-to-real_wf rdiv_wf rsub_wf rccint_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin unionElimination lemma_by_obid isectElimination hypothesisEquality hypothesis because_Cache natural_numberEquality setElimination rename independent_isectElimination inrFormation dependent_functionElimination independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll minusEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[I:Interval].    (i-approx(I;n)  \mmember{}  Interval)



Date html generated: 2016_05_18-AM-08_39_25
Last ObjectModification: 2016_01_17-AM-02_23_35

Theory : reals


Home Index