Nuprl Lemma : i-member-approx
∀I:Interval. ∀x:ℝ. ∀n:ℕ+.  ((x ∈ i-approx(I;n)) 
⇒ (x ∈ I))
Proof
Definitions occuring in Statement : 
i-approx: i-approx(I;n)
, 
i-member: r ∈ I
, 
interval: Interval
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
i-member-iff, 
i-member_wf, 
i-approx_wf, 
nat_plus_wf, 
real_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation, 
hypothesis, 
isectElimination
Latex:
\mforall{}I:Interval.  \mforall{}x:\mBbbR{}.  \mforall{}n:\mBbbN{}\msupplus{}.    ((x  \mmember{}  i-approx(I;n))  {}\mRightarrow{}  (x  \mmember{}  I))
Date html generated:
2016_05_18-AM-08_40_50
Last ObjectModification:
2015_12_27-PM-11_51_12
Theory : reals
Home
Index