Nuprl Lemma : i-member-approx

I:Interval. ∀x:ℝ. ∀n:ℕ+.  ((x ∈ i-approx(I;n))  (x ∈ I))


Proof




Definitions occuring in Statement :  i-approx: i-approx(I;n) i-member: r ∈ I interval: Interval real: nat_plus: + all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x] prop: uall: [x:A]. B[x]
Lemmas referenced :  i-member-iff i-member_wf i-approx_wf nat_plus_wf real_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_functionElimination dependent_pairFormation hypothesis isectElimination

Latex:
\mforall{}I:Interval.  \mforall{}x:\mBbbR{}.  \mforall{}n:\mBbbN{}\msupplus{}.    ((x  \mmember{}  i-approx(I;n))  {}\mRightarrow{}  (x  \mmember{}  I))



Date html generated: 2016_05_18-AM-08_40_50
Last ObjectModification: 2015_12_27-PM-11_51_12

Theory : reals


Home Index