Nuprl Lemma : derivative_wf

[I:Interval]. ∀[f,g:I ⟶ℝ].  x.g[x] d(f[x])/dx on I ∈ ℙ)


Proof




Definitions occuring in Statement :  derivative: λz.g[z] d(f[x])/dx on I rfun: I ⟶ℝ interval: Interval uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T
Definitions unfolded in proof :  prop: uall: [x:A]. B[x] implies:  Q member: t ∈ T all: x:A. B[x] derivative: λz.g[z] d(f[x])/dx on I so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] rfun: I ⟶ℝ nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q rless: x < y sq_exists: x:{A| B[x]} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top
Lemmas referenced :  interval_wf rfun_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties rless-int rdiv_wf rmul_wf rsub_wf rabs_wf rleq_wf int-to-real_wf rless_wf real_wf sq_exists_wf i-approx_wf icompact_wf nat_plus_wf all_wf i-member-approx i-member_wf
Rules used in proof :  isectElimination because_Cache dependent_set_memberEquality hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalHypSubstitution lemma_by_obid cut isect_memberFormation introduction sqequalRule lambdaEquality setEquality lambdaFormation setElimination rename productEquality natural_numberEquality functionEquality applyEquality independent_isectElimination inrFormation productElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I:Interval].  \mforall{}[f,g:I  {}\mrightarrow{}\mBbbR{}].    (\mlambda{}x.g[x]  =  d(f[x])/dx  on  I  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-09_59_10
Last ObjectModification: 2016_01_17-AM-00_41_24

Theory : reals


Home Index