Nuprl Lemma : rfun-eq_wf

[I:Interval]. ∀[f,g:I ⟶ℝ].  (rfun-eq(I;f;g) ∈ ℙ)


Proof




Definitions occuring in Statement :  rfun-eq: rfun-eq(I;f;g) rfun: I ⟶ℝ interval: Interval uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rfun-eq: rfun-eq(I;f;g) prop: so_lambda: λ2x.t[x] all: x:A. B[x] uimplies: supposing a so_apply: x[s]
Lemmas referenced :  all_wf real_wf i-member_wf req_wf r-ap_wf rfun_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesis hypothesisEquality lambdaEquality lambdaFormation setElimination rename independent_isectElimination because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[I:Interval].  \mforall{}[f,g:I  {}\mrightarrow{}\mBbbR{}].    (rfun-eq(I;f;g)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-08_42_10
Last ObjectModification: 2015_12_27-PM-11_51_03

Theory : reals


Home Index