Nuprl Lemma : rsum-split-first
∀[n,m:ℤ]. ∀[x:{n..m + 1-} ⟶ ℝ].  Σ{x[i] | n≤i≤m} = (x[n] + Σ{x[i] | n + 1≤i≤m}) supposing n ≤ m
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}
, 
req: x = y
, 
radd: a + b
, 
real: ℝ
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
Lemmas referenced : 
req_witness, 
rsum_wf, 
int_seg_wf, 
radd_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformand_wf, 
intformless_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
lelt_wf, 
le_wf, 
real_wf, 
equal-wf-base, 
int_subtype_base, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
rsum-split, 
req_functionality, 
req_weakening, 
radd_functionality, 
rsum-single
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
addEquality, 
natural_numberEquality, 
hypothesis, 
dependent_set_memberEquality, 
because_Cache, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
setElimination, 
rename, 
productElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
lambdaFormation, 
setEquality
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    \mSigma{}\{x[i]  |  n\mleq{}i\mleq{}m\}  =  (x[n]  +  \mSigma{}\{x[i]  |  n  +  1\mleq{}i\mleq{}m\})  supposing  n  \mleq{}  m
Date html generated:
2017_10_03-AM-08_58_30
Last ObjectModification:
2017_07_28-AM-07_38_15
Theory : reals
Home
Index