Nuprl Lemma : radd-positive-implies

x,y:ℝ.  ((r0 < (x y))  ((r0 < x) ∨ (r0 < y)))


Proof




Definitions occuring in Statement :  rless: x < y radd: b int-to-real: r(n) real: all: x:A. B[x] implies:  Q or: P ∨ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rless: x < y sq_exists: x:A [B[x]] member: t ∈ T real: nat_plus: + uall: [x:A]. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: int-to-real: r(n) sq_type: SQType(T) guard: {T} subtype_rel: A ⊆B int_nzero: -o true: True nequal: a ≠ b ∈  uiff: uiff(P;Q) nat: so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) absval: |i| less_than: a < b squash: T
Lemmas referenced :  decidable__lt nat_plus_properties full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf istype-less_than subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma int-to-real_wf rless_wf radd_wf real_wf decidable__le intformle_wf int_formula_prop_le_lemma radd-approx divide_wfa nequal_wf istype-le div_rem_sum rem_bounds_absval absval_strict_ubound remainder_wfa absval_wf nat_wf set_subtype_base le_wf istype-false absval_pos
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution setElimination thin rename cut introduction extract_by_obid dependent_functionElimination natural_numberEquality applyEquality hypothesisEquality hypothesis dependent_set_memberEquality_alt multiplyEquality isectElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType inlFormation_alt dependent_set_memberFormation_alt because_Cache instantiate cumulativity intEquality equalityTransitivity equalitySymmetry addEquality inhabitedIsType inrFormation_alt equalityIstype baseClosed sqequalBase productElimination imageElimination minusEquality

Latex:
\mforall{}x,y:\mBbbR{}.    ((r0  <  (x  +  y))  {}\mRightarrow{}  ((r0  <  x)  \mvee{}  (r0  <  y)))



Date html generated: 2019_10_29-AM-10_00_07
Last ObjectModification: 2019_05_24-AM-11_13_35

Theory : reals


Home Index