Nuprl Lemma : radd-positive-implies
∀x,y:ℝ.  ((r0 < (x + y)) 
⇒ ((r0 < x) ∨ (r0 < y)))
Proof
Definitions occuring in Statement : 
rless: x < y
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
member: t ∈ T
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
int-to-real: r(n)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
uiff: uiff(P;Q)
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
absval: |i|
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
decidable__lt, 
nat_plus_properties, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-less_than, 
subtype_base_sq, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int-to-real_wf, 
rless_wf, 
radd_wf, 
real_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
radd-approx, 
divide_wfa, 
nequal_wf, 
istype-le, 
div_rem_sum, 
rem_bounds_absval, 
absval_strict_ubound, 
remainder_wfa, 
absval_wf, 
nat_wf, 
set_subtype_base, 
le_wf, 
istype-false, 
absval_pos
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
natural_numberEquality, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality_alt, 
multiplyEquality, 
isectElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
inlFormation_alt, 
dependent_set_memberFormation_alt, 
because_Cache, 
instantiate, 
cumulativity, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
inhabitedIsType, 
inrFormation_alt, 
equalityIstype, 
baseClosed, 
sqequalBase, 
productElimination, 
imageElimination, 
minusEquality
Latex:
\mforall{}x,y:\mBbbR{}.    ((r0  <  (x  +  y))  {}\mRightarrow{}  ((r0  <  x)  \mvee{}  (r0  <  y)))
Date html generated:
2019_10_29-AM-10_00_07
Last ObjectModification:
2019_05_24-AM-11_13_35
Theory : reals
Home
Index