Nuprl Lemma : radd-approx
∀[a,b:ℝ]. ∀[n:ℕ+].  ((a + b) n ~ ((a (4 * n)) + (b (4 * n))) ÷ 4)
Proof
Definitions occuring in Statement : 
radd: a + b
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
divide: n ÷ m
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
radd: a + b
, 
reg-seq-list-add: reg-seq-list-add(L)
, 
accelerate: accelerate(k;f)
, 
cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L)
, 
has-value: (a)↓
, 
nat_plus: ℕ+
, 
cons: [a / b]
, 
real: ℝ
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
nil: []
, 
it: ⋅
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
nequal: a ≠ b ∈ T 
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
value-type-has-value, 
int-value-type, 
mul_nat_plus, 
less_than_wf, 
list_wf, 
real_wf, 
list-value-type, 
cons_wf, 
nil_wf, 
spread_cons_lemma, 
add-associates, 
zero-add, 
nat_plus_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformand_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
equal-wf-base, 
true_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
callbyvalueReduce, 
sqleReflexivity, 
multiplyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
addEquality, 
applyEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaEquality, 
divideEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
addLevel, 
lambdaFormation, 
independent_functionElimination, 
sqequalAxiom
Latex:
\mforall{}[a,b:\mBbbR{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((a  +  b)  n  \msim{}  ((a  (4  *  n))  +  (b  (4  *  n)))  \mdiv{}  4)
Date html generated:
2017_01_09-AM-08_54_58
Last ObjectModification:
2016_11_21-PM-03_00_30
Theory : reals
Home
Index