Nuprl Lemma : radd-approx
∀[a,b:ℝ]. ∀[n:ℕ+].  ((a + b) n ~ ((a (4 * n)) + (b (4 * n))) ÷ 4)
Proof
Definitions occuring in Statement : 
radd: a + b, 
real: ℝ, 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
apply: f a, 
divide: n ÷ m, 
multiply: n * m, 
add: n + m, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
radd: a + b, 
reg-seq-list-add: reg-seq-list-add(L), 
accelerate: accelerate(k;f), 
cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L), 
has-value: (a)↓, 
nat_plus: ℕ+, 
cons: [a / b], 
real: ℝ, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
and: P ∧ Q, 
prop: ℙ, 
all: ∀x:A. B[x], 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
nil: [], 
it: ⋅, 
subtype_rel: A ⊆r B, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
nequal: a ≠ b ∈ T , 
sq_type: SQType(T), 
guard: {T}
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
value-type-has-value, 
int-value-type, 
mul_nat_plus, 
less_than_wf, 
list_wf, 
real_wf, 
list-value-type, 
cons_wf, 
nil_wf, 
spread_cons_lemma, 
add-associates, 
zero-add, 
nat_plus_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformand_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
equal-wf-base, 
true_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
callbyvalueReduce, 
sqleReflexivity, 
multiplyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
addEquality, 
applyEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaEquality, 
divideEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
addLevel, 
lambdaFormation, 
independent_functionElimination, 
sqequalAxiom
Latex:
\mforall{}[a,b:\mBbbR{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((a  +  b)  n  \msim{}  ((a  (4  *  n))  +  (b  (4  *  n)))  \mdiv{}  4)
Date html generated:
2017_01_09-AM-08_54_58
Last ObjectModification:
2016_11_21-PM-03_00_30
Theory : reals
Home
Index