Nuprl Lemma : radd-approx

[a,b:ℝ]. ∀[n:ℕ+].  ((a b) ((a (4 n)) (b (4 n))) ÷ 4)


Proof




Definitions occuring in Statement :  radd: b real: nat_plus: + uall: [x:A]. B[x] apply: a divide: n ÷ m multiply: m add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a radd: b reg-seq-list-add: reg-seq-list-add(L) accelerate: accelerate(k;f) cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L) has-value: (a)↓ nat_plus: + cons: [a b] real: less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: all: x:A. B[x] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] nil: [] it: subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A nequal: a ≠ b ∈  sq_type: SQType(T) guard: {T}
Lemmas referenced :  subtype_base_sq int_subtype_base value-type-has-value int-value-type mul_nat_plus less_than_wf list_wf real_wf list-value-type cons_wf nil_wf spread_cons_lemma add-associates zero-add nat_plus_properties decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermMultiply_wf itermConstant_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformand_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_less_lemma equal-wf-base true_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis sqequalRule callbyvalueReduce sqleReflexivity multiplyEquality natural_numberEquality setElimination rename hypothesisEquality because_Cache addEquality applyEquality dependent_set_memberEquality independent_pairFormation imageMemberEquality baseClosed dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaEquality divideEquality unionElimination dependent_pairFormation int_eqEquality computeAll equalityTransitivity equalitySymmetry addLevel lambdaFormation independent_functionElimination sqequalAxiom

Latex:
\mforall{}[a,b:\mBbbR{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((a  +  b)  n  \msim{}  ((a  (4  *  n))  +  (b  (4  *  n)))  \mdiv{}  4)



Date html generated: 2017_01_09-AM-08_54_58
Last ObjectModification: 2016_11_21-PM-03_00_30

Theory : reals


Home Index