Nuprl Lemma : rfun_subtype_3
∀[a,b,c,d:ℝ].  ((a ≤ c) 
⇒ (c ≤ d) 
⇒ (d ≤ b) 
⇒ ([a, b] ⟶ℝ ⊆r [c, d] ⟶ℝ))
Proof
Definitions occuring in Statement : 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
rleq: x ≤ y
, 
real: ℝ
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
rfun: I ⟶ℝ
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
rfun_wf, 
rccint_wf, 
rleq_wf, 
real_wf, 
i-member_wf, 
member_rccint_lemma, 
rleq_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
axiomEquality, 
because_Cache, 
isect_memberEquality, 
functionExtensionality, 
setEquality, 
setElimination, 
rename, 
voidElimination, 
voidEquality, 
applyEquality, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
productEquality
Latex:
\mforall{}[a,b,c,d:\mBbbR{}].    ((a  \mleq{}  c)  {}\mRightarrow{}  (c  \mleq{}  d)  {}\mRightarrow{}  (d  \mleq{}  b)  {}\mRightarrow{}  ([a,  b]  {}\mrightarrow{}\mBbbR{}  \msubseteq{}r  [c,  d]  {}\mrightarrow{}\mBbbR{}))
Date html generated:
2016_10_26-AM-09_30_08
Last ObjectModification:
2016_08_20-PM-07_30_07
Theory : reals
Home
Index