Nuprl Lemma : non-zero-deriv-non-constant
∀a,b:ℝ.
  ((a < b)
  
⇒ (∀f,f':[a, b] ⟶ℝ.
        (d(f(x))/dx = λx.f'(x) on [a, b]
        
⇒ (∃z:{z:ℝ| z ∈ [a, b]} . f'(z) ≠ r0)
        
⇒ (∀c:ℝ. ∃z:{z:ℝ| z ∈ [a, b]} . f(z) ≠ c))))
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I
, 
r-ap: f(x)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rneq: x ≠ y
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
and: P ∧ Q
, 
top: Top
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
derivative: d(f[x])/dx = λz.g[z] on I
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
i-approx: i-approx(I;n)
, 
iproper: iproper(I)
, 
i-finite: i-finite(I)
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cand: A c∧ B
, 
sq_exists: ∃x:{A| B[x]}
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
rless: x < y
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
rge: x ≥ y
, 
subtype_rel: A ⊆r B
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
uiff: uiff(P;Q)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
rdiv: (x/y)
, 
rsub: x - y
Lemmas referenced : 
small-reciprocal-rneq-zero, 
r-ap_wf, 
member_rccint_lemma, 
sq_stable__rleq, 
real_wf, 
exists_wf, 
i-member_wf, 
rccint_wf, 
rneq_wf, 
int-to-real_wf, 
derivative_wf, 
rfun_wf, 
rless_wf, 
rccint-icompact, 
rleq_weakening_rless, 
mul_nat_plus, 
less_than_wf, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
true_wf, 
icompact_wf, 
rleq_functionality_wrt_implies, 
rabs_wf, 
rsub_wf, 
rmul_wf, 
rdiv_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
i-approx-of-compact, 
iff_weakening_equal, 
rleq_weakening_equal, 
rleq_weakening, 
real_term_polynomial, 
itermSubtract_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rleq_wf, 
all_wf, 
less_than'_wf, 
nat_plus_wf, 
squash_wf, 
sq_stable__and, 
sq_stable__rless, 
sq_stable__all, 
radd_wf, 
equal_wf, 
r-triangle-inequality2, 
rleq_functionality, 
req_weakening, 
rabs_functionality, 
radd_functionality_wrt_rleq, 
radd_functionality, 
rabs-difference-symmetry, 
rmul_functionality, 
req_inversion, 
rmul_preserves_rleq2, 
rmul-nonneg-case1, 
rleq-int, 
false_wf, 
zero-rleq-rabs, 
rinv_wf2, 
uiff_transitivity, 
rinv-mul-as-rdiv, 
rabs-rmul, 
rmul-is-positive, 
rmul_preserves_rleq, 
rdiv_functionality, 
rmul-int, 
rinv-of-rmul, 
req_transitivity, 
itermAdd_wf, 
real_term_value_add_lemma, 
rmul-rinv3, 
rleq_transitivity, 
rleq-implies-rleq, 
rless-cases, 
ravg-between, 
rmin_wf, 
ravg_wf, 
radd-zero-both, 
radd-rminus-assoc, 
radd-rminus-both, 
radd-ac, 
rminus_functionality, 
rmin_functionality, 
radd_comm, 
radd-assoc, 
rmin_lb, 
rminus_wf, 
radd-preserves-rleq, 
rmul-zero-both, 
radd-int, 
rmul-distrib2, 
rmul-identity1, 
rminus-as-rmul, 
rless_transitivity2, 
rmin_ub, 
rabs-of-nonneg, 
rabs-rminus, 
rless_functionality, 
itermMinus_wf, 
real_term_value_minus_lemma, 
rmin_strict_ub, 
rless-implies-rless, 
rless_functionality_wrt_implies, 
rless-int-fractions2, 
rabs-positive-iff, 
radd-preserves-rless
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
independent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
setEquality, 
lambdaEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
productEquality, 
functionEquality, 
multiplyEquality, 
inrFormation, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
minusEquality, 
independent_pairEquality, 
axiomEquality, 
isect_memberFormation, 
inlFormation, 
addEquality, 
universeEquality, 
promote_hyp
Latex:
\mforall{}a,b:\mBbbR{}.
    ((a  <  b)
    {}\mRightarrow{}  (\mforall{}f,f':[a,  b]  {}\mrightarrow{}\mBbbR{}.
                (d(f(x))/dx  =  \mlambda{}x.f'(x)  on  [a,  b]
                {}\mRightarrow{}  (\mexists{}z:\{z:\mBbbR{}|  z  \mmember{}  [a,  b]\}  .  f'(z)  \mneq{}  r0)
                {}\mRightarrow{}  (\mforall{}c:\mBbbR{}.  \mexists{}z:\{z:\mBbbR{}|  z  \mmember{}  [a,  b]\}  .  f(z)  \mneq{}  c))))
Date html generated:
2017_10_03-PM-00_34_57
Last ObjectModification:
2017_07_28-AM-08_43_35
Theory : reals
Home
Index