Nuprl Lemma : non-zero-deriv-non-constant

a,b:ℝ.
  ((a < b)
   (∀f,f':[a, b] ⟶ℝ.
        (d(f(x))/dx = λx.f'(x) on [a, b]
         (∃z:{z:ℝz ∈ [a, b]} f'(z) ≠ r0)
         (∀c:ℝ. ∃z:{z:ℝz ∈ [a, b]} f(z) ≠ c))))


Proof




Definitions occuring in Statement :  derivative: d(f[x])/dx = λz.g[z] on I r-ap: f(x) rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I rneq: x ≠ y rless: x < y int-to-real: r(n) real: all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a i-member: r ∈ I rccint: [l, u] and: P ∧ Q top: Top sq_stable: SqStable(P) squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s] label: ...$L... t rfun: I ⟶ℝ iff: ⇐⇒ Q guard: {T} derivative: d(f[x])/dx = λz.g[z] on I nat_plus: + less_than: a < b less_than': less_than'(a;b) true: True i-approx: i-approx(I;n) iproper: iproper(I) i-finite: i-finite(I) isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt cand: c∧ B sq_exists: x:{A| B[x]} rev_uimplies: rev_uimplies(P;Q) rneq: x ≠ y or: P ∨ Q rev_implies:  Q rless: x < y decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A rge: x ≥ y subtype_rel: A ⊆B itermConstant: "const" req_int_terms: t1 ≡ t2 uiff: uiff(P;Q) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B rdiv: (x/y) rsub: y
Lemmas referenced :  small-reciprocal-rneq-zero r-ap_wf member_rccint_lemma sq_stable__rleq real_wf exists_wf i-member_wf rccint_wf rneq_wf int-to-real_wf derivative_wf rfun_wf rless_wf rccint-icompact rleq_weakening_rless mul_nat_plus less_than_wf left_endpoint_rccint_lemma right_endpoint_rccint_lemma true_wf icompact_wf rleq_functionality_wrt_implies rabs_wf rsub_wf rmul_wf rdiv_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf i-approx-of-compact iff_weakening_equal rleq_weakening_equal rleq_weakening real_term_polynomial itermSubtract_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rleq_wf all_wf less_than'_wf nat_plus_wf squash_wf sq_stable__and sq_stable__rless sq_stable__all radd_wf equal_wf r-triangle-inequality2 rleq_functionality req_weakening rabs_functionality radd_functionality_wrt_rleq radd_functionality rabs-difference-symmetry rmul_functionality req_inversion rmul_preserves_rleq2 rmul-nonneg-case1 rleq-int false_wf zero-rleq-rabs rinv_wf2 uiff_transitivity rinv-mul-as-rdiv rabs-rmul rmul-is-positive rmul_preserves_rleq rdiv_functionality rmul-int rinv-of-rmul req_transitivity itermAdd_wf real_term_value_add_lemma rmul-rinv3 rleq_transitivity rleq-implies-rleq rless-cases ravg-between rmin_wf ravg_wf radd-zero-both radd-rminus-assoc radd-rminus-both radd-ac rminus_functionality rmin_functionality radd_comm radd-assoc rmin_lb rminus_wf radd-preserves-rleq rmul-zero-both radd-int rmul-distrib2 rmul-identity1 rminus-as-rmul rless_transitivity2 rmin_ub rabs-of-nonneg rabs-rminus rless_functionality itermMinus_wf real_term_value_minus_lemma rmin_strict_ub rless-implies-rless rless_functionality_wrt_implies rless-int-fractions2 rabs-positive-iff radd-preserves-rless
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination isectElimination because_Cache hypothesisEquality setElimination rename hypothesis independent_isectElimination sqequalRule independent_pairFormation isect_memberEquality voidElimination voidEquality independent_functionElimination imageMemberEquality baseClosed imageElimination setEquality lambdaEquality natural_numberEquality dependent_set_memberEquality productEquality functionEquality multiplyEquality inrFormation unionElimination dependent_pairFormation int_eqEquality intEquality computeAll applyEquality equalityTransitivity equalitySymmetry minusEquality independent_pairEquality axiomEquality isect_memberFormation inlFormation addEquality universeEquality promote_hyp

Latex:
\mforall{}a,b:\mBbbR{}.
    ((a  <  b)
    {}\mRightarrow{}  (\mforall{}f,f':[a,  b]  {}\mrightarrow{}\mBbbR{}.
                (d(f(x))/dx  =  \mlambda{}x.f'(x)  on  [a,  b]
                {}\mRightarrow{}  (\mexists{}z:\{z:\mBbbR{}|  z  \mmember{}  [a,  b]\}  .  f'(z)  \mneq{}  r0)
                {}\mRightarrow{}  (\mforall{}c:\mBbbR{}.  \mexists{}z:\{z:\mBbbR{}|  z  \mmember{}  [a,  b]\}  .  f(z)  \mneq{}  c))))



Date html generated: 2017_10_03-PM-00_34_57
Last ObjectModification: 2017_07_28-AM-08_43_35

Theory : reals


Home Index