Nuprl Lemma : rmin_ub
∀x,y,z:ℝ.  ((z ≤ x) ∧ (z ≤ y) 
⇐⇒ z ≤ rmin(x;y))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rmin: rmin(x;y)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
rleq: x ≤ y
, 
rsub: x - y
, 
uimplies: b supposing a
, 
cand: A c∧ B
Lemmas referenced : 
and_wf, 
rleq_wf, 
rmin_wf, 
real_wf, 
rnonneg_functionality, 
radd_wf, 
rminus_wf, 
radd_comm, 
radd-rmin, 
rmin_functionality, 
rmin-nonneg, 
rmin-rleq, 
rleq_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
independent_isectElimination, 
independent_functionElimination, 
because_Cache
Latex:
\mforall{}x,y,z:\mBbbR{}.    ((z  \mleq{}  x)  \mwedge{}  (z  \mleq{}  y)  \mLeftarrow{}{}\mRightarrow{}  z  \mleq{}  rmin(x;y))
Date html generated:
2016_05_18-AM-07_16_49
Last ObjectModification:
2015_12_28-AM-00_44_15
Theory : reals
Home
Index