Nuprl Lemma : rmin_ub

x,y,z:ℝ.  ((z ≤ x) ∧ (z ≤ y) ⇐⇒ z ≤ rmin(x;y))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rmin: rmin(x;y) real: all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q rleq: x ≤ y rsub: y uimplies: supposing a cand: c∧ B
Lemmas referenced :  and_wf rleq_wf rmin_wf real_wf rnonneg_functionality radd_wf rminus_wf radd_comm radd-rmin rmin_functionality rmin-nonneg rmin-rleq rleq_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin cut lemma_by_obid isectElimination hypothesisEquality hypothesis dependent_functionElimination independent_isectElimination independent_functionElimination because_Cache

Latex:
\mforall{}x,y,z:\mBbbR{}.    ((z  \mleq{}  x)  \mwedge{}  (z  \mleq{}  y)  \mLeftarrow{}{}\mRightarrow{}  z  \mleq{}  rmin(x;y))



Date html generated: 2016_05_18-AM-07_16_49
Last ObjectModification: 2015_12_28-AM-00_44_15

Theory : reals


Home Index