Nuprl Lemma : r-triangle-inequality2

[x,y,z:ℝ].  (|x z| ≤ (|x y| |y z|))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rabs: |x| rsub: y radd: b real: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False subtype_rel: A ⊆B real: prop: uimplies: supposing a itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  r-triangle-inequality rsub_wf less_than'_wf radd_wf rabs_wf real_wf nat_plus_wf rminus_wf rmul_wf int-to-real_wf rleq_functionality rabs_functionality req_transitivity real_term_polynomial itermSubtract_wf itermAdd_wf itermVar_wf itermMultiply_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_mul_lemma req-iff-rsub-is-0 radd_functionality req_weakening rmul-identity1 req_inversion rminus-as-rmul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality dependent_functionElimination productElimination independent_pairEquality because_Cache applyEquality setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination independent_isectElimination computeAll int_eqEquality intEquality voidEquality

Latex:
\mforall{}[x,y,z:\mBbbR{}].    (|x  -  z|  \mleq{}  (|x  -  y|  +  |y  -  z|))



Date html generated: 2017_10_03-AM-08_29_31
Last ObjectModification: 2017_07_28-AM-07_25_58

Theory : reals


Home Index