Nuprl Lemma : i-approx-of-compact
∀I:Interval. (icompact(I) 
⇒ (∀n:ℕ+. (i-approx(I;n) = I ∈ Interval)))
Proof
Definitions occuring in Statement : 
icompact: icompact(I)
, 
i-approx: i-approx(I;n)
, 
interval: Interval
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
icompact: icompact(I)
, 
i-finite: i-finite(I)
, 
i-closed: i-closed(I)
, 
interval: Interval
, 
isl: isl(x)
, 
outl: outl(x)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
assert: ↑b
, 
bor: p ∨bq
, 
bfalse: ff
, 
and: P ∧ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
top: Top
, 
i-approx: i-approx(I;n)
, 
rccint: [l, u]
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
subtype_rel_product, 
real_wf, 
top_wf, 
subtype_rel_union, 
nat_plus_wf, 
icompact_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
unionElimination, 
sqequalRule, 
independent_pairEquality, 
inlEquality, 
hypothesisEquality, 
voidEquality, 
because_Cache, 
applyEquality, 
lemma_by_obid, 
isectElimination, 
unionEquality, 
hypothesis, 
lambdaEquality, 
independent_isectElimination, 
voidElimination, 
isect_memberEquality
Latex:
\mforall{}I:Interval.  (icompact(I)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  (i-approx(I;n)  =  I)))
Date html generated:
2016_05_18-AM-08_46_47
Last ObjectModification:
2015_12_27-PM-11_46_53
Theory : reals
Home
Index