Nuprl Lemma : i-approx-of-compact

I:Interval. (icompact(I)  (∀n:ℕ+(i-approx(I;n) I ∈ Interval)))


Proof




Definitions occuring in Statement :  icompact: icompact(I) i-approx: i-approx(I;n) interval: Interval nat_plus: + all: x:A. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q icompact: icompact(I) i-finite: i-finite(I) i-closed: i-closed(I) interval: Interval isl: isl(x) outl: outl(x) bnot: ¬bb ifthenelse: if then else fi  btrue: tt assert: b bor: p ∨bq bfalse: ff and: P ∧ Q member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a top: Top i-approx: i-approx(I;n) rccint: [l, u] false: False prop:
Lemmas referenced :  subtype_rel_product real_wf top_wf subtype_rel_union nat_plus_wf icompact_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution productElimination thin unionElimination sqequalRule independent_pairEquality inlEquality hypothesisEquality voidEquality because_Cache applyEquality lemma_by_obid isectElimination unionEquality hypothesis lambdaEquality independent_isectElimination voidElimination isect_memberEquality

Latex:
\mforall{}I:Interval.  (icompact(I)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  (i-approx(I;n)  =  I)))



Date html generated: 2016_05_18-AM-08_46_47
Last ObjectModification: 2015_12_27-PM-11_46_53

Theory : reals


Home Index