Nuprl Lemma : small-reciprocal-rneq-zero
∀x:ℝ. (x ≠ r0 
⇒ (∃k:ℕ+. ((r1/r(k)) < |x|)))
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
rless: x < y
, 
rabs: |x|
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
small-reciprocal-real-ext, 
rabs_wf, 
rless_wf, 
int-to-real_wf, 
rneq_wf, 
real_wf, 
rpositive-rless, 
rabs-positive
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
dependent_set_memberEquality, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}x:\mBbbR{}.  (x  \mneq{}  r0  {}\mRightarrow{}  (\mexists{}k:\mBbbN{}\msupplus{}.  ((r1/r(k))  <  |x|)))
Date html generated:
2016_05_18-AM-07_34_37
Last ObjectModification:
2015_12_28-AM-00_55_49
Theory : reals
Home
Index