Nuprl Lemma : small-reciprocal-rneq-zero

x:ℝ(x ≠ r0  (∃k:ℕ+((r1/r(k)) < |x|)))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y rless: x < y rabs: |x| int-to-real: r(n) real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  small-reciprocal-real-ext rabs_wf rless_wf int-to-real_wf rneq_wf real_wf rpositive-rless rabs-positive
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin dependent_set_memberEquality isectElimination hypothesisEquality hypothesis natural_numberEquality productElimination independent_functionElimination

Latex:
\mforall{}x:\mBbbR{}.  (x  \mneq{}  r0  {}\mRightarrow{}  (\mexists{}k:\mBbbN{}\msupplus{}.  ((r1/r(k))  <  |x|)))



Date html generated: 2016_05_18-AM-07_34_37
Last ObjectModification: 2015_12_28-AM-00_55_49

Theory : reals


Home Index