Nuprl Lemma : rpositive-rless

[x:ℝ]. (r0 < ⇐⇒ rpositive(x))


Proof




Definitions occuring in Statement :  rless: x < y rpositive: rpositive(x) int-to-real: r(n) real: uall: [x:A]. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  rpositive: rpositive(x) int-to-real: r(n) rless: x < y uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q sq_exists: x:{A| B[x]} member: t ∈ T nat_plus: + all: x:A. B[x] real: prop: decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q
Lemmas referenced :  real_wf nat_plus_wf sq_exists_wf int_formula_prop_wf int_term_value_mul_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermMultiply_wf itermAdd_wf itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt less_than_wf decidable__lt nat_plus_properties
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation independent_pairFormation lambdaFormation sqequalHypSubstitution setElimination thin rename introduction dependent_set_memberEquality hypothesisEquality cut lemma_by_obid isectElimination hypothesis dependent_functionElimination natural_numberEquality applyEquality unionElimination imageElimination productElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll addEquality multiplyEquality

Latex:
\mforall{}[x:\mBbbR{}].  (r0  <  x  \mLeftarrow{}{}\mRightarrow{}  rpositive(x))



Date html generated: 2016_05_18-AM-07_03_23
Last ObjectModification: 2016_01_17-AM-01_49_33

Theory : reals


Home Index