Nuprl Lemma : rabs-positive
∀x:ℝ. (x ≠ r0 ⇒ rpositive(|x|))
Proof
Definitions occuring in Statement : 
rneq: x ≠ y, 
rpositive: rpositive(x), 
rabs: |x|, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
top: Top, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
prop: ℙ
Lemmas referenced : 
rabs-as-rmax, 
rneq-zero, 
rmax-positive, 
rminus_wf, 
rneq_wf, 
int-to-real_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
lambdaFormation, 
dependent_functionElimination, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
because_Cache, 
natural_numberEquality
Latex:
\mforall{}x:\mBbbR{}.  (x  \mneq{}  r0  {}\mRightarrow{}  rpositive(|x|))
Date html generated:
2016_05_18-AM-07_12_50
Last ObjectModification:
2015_12_28-AM-00_40_59
Theory : reals
Home
Index