Nuprl Lemma : rabs-positive

x:ℝ(x ≠ r0  rpositive(|x|))


Proof




Definitions occuring in Statement :  rneq: x ≠ y rpositive: rpositive(x) rabs: |x| int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q prop:
Lemmas referenced :  rabs-as-rmax rneq-zero rmax-positive rminus_wf rneq_wf int-to-real_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis lambdaFormation dependent_functionElimination hypothesisEquality productElimination independent_functionElimination because_Cache natural_numberEquality

Latex:
\mforall{}x:\mBbbR{}.  (x  \mneq{}  r0  {}\mRightarrow{}  rpositive(|x|))



Date html generated: 2016_05_18-AM-07_12_50
Last ObjectModification: 2015_12_28-AM-00_40_59

Theory : reals


Home Index