Nuprl Lemma : finite-deriv-seq_wf

[I:Interval]. ∀[k:ℕ]. ∀[F:ℕ1 ⟶ I ⟶ℝ].  (finite-deriv-seq(I;k;i,x.F[i;x]) ∈ ℙ)


Proof




Definitions occuring in Statement :  finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x]) rfun: I ⟶ℝ interval: Interval int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  subtract: m uiff: uiff(P;Q) so_apply: x[s] subtype_rel: A ⊆B prop: top: Top not: ¬A implies:  Q false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} so_apply: x[s1;s2] rfun: I ⟶ℝ label: ...$L... t so_lambda: λ2x.t[x] nat: finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x]) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  all_wf int_seg_wf derivative_wf nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf lelt_wf real_wf i-member_wf add-member-int_seg2 decidable__le subtract_wf intformle_wf itermSubtract_wf int_formula_prop_le_lemma int_term_value_subtract_lemma add-subtract-cancel rfun_wf nat_wf interval_wf
Rules used in proof :  functionEquality equalitySymmetry equalityTransitivity axiomEquality setEquality because_Cache computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation independent_isectElimination unionElimination addEquality dependent_functionElimination independent_pairFormation productElimination dependent_set_memberEquality applyEquality lambdaEquality hypothesis hypothesisEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution lemma_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[I:Interval].  \mforall{}[k:\mBbbN{}].  \mforall{}[F:\mBbbN{}k  +  1  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}].    (finite-deriv-seq(I;k;i,x.F[i;x])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-10_20_33
Last ObjectModification: 2016_01_17-AM-00_31_21

Theory : reals


Home Index