Nuprl Lemma : derivative_functionality_wrt_subinterval
∀I,J:Interval.  ∀[f,f':I ⟶ℝ].  (J ⊆ I  
⇒ d(f[x])/dx = λx.f'[x] on I 
⇒ d(f[x])/dx = λx.f'[x] on J)
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I
, 
subinterval: I ⊆ J 
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
derivative: d(f[x])/dx = λz.g[z] on I
, 
member: t ∈ T
, 
and: P ∧ Q
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
cand: A c∧ B
, 
iproper: iproper(I)
, 
uimplies: b supposing a
, 
subinterval: I ⊆ J 
, 
rbetween: x≤y≤z
, 
guard: {T}
, 
sq_exists: ∃x:{A| B[x]}
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rless: x < y
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
compact-subinterval, 
i-approx_wf, 
icompact_wf, 
subinterval_transitivity, 
less_than_wf, 
i-approx-is-subinterval, 
set_wf, 
nat_plus_wf, 
iproper_wf, 
derivative_wf, 
i-member_wf, 
real_wf, 
subinterval_wf, 
rfun_wf, 
interval_wf, 
i-finite_wf, 
i-finite-subinterval, 
i-member-finite, 
left-endpoint_wf, 
i-approx-finite, 
icompact-endpoints, 
right-endpoint_wf, 
rless_transitivity2, 
rless_transitivity1, 
i-member-approx, 
rless_wf, 
int-to-real_wf, 
all_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rmul_wf, 
rdiv_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
setElimination, 
rename, 
dependent_set_memberEquality, 
isectElimination, 
productElimination, 
independent_functionElimination, 
natural_numberEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
productEquality, 
applyEquality, 
setEquality, 
independent_pairFormation, 
independent_isectElimination, 
promote_hyp, 
functionEquality, 
inrFormation, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll
Latex:
\mforall{}I,J:Interval.    \mforall{}[f,f':I  {}\mrightarrow{}\mBbbR{}].    (J  \msubseteq{}  I    {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.f'[x]  on  I  {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.f'[x]  on  J)
Date html generated:
2016_10_26-AM-11_19_12
Last ObjectModification:
2016_08_22-PM-10_08_15
Theory : reals
Home
Index