Nuprl Lemma : derivative_functionality_wrt_subinterval

I,J:Interval.  ∀[f,f':I ⟶ℝ].  (J ⊆ I   d(f[x])/dx = λx.f'[x] on  d(f[x])/dx = λx.f'[x] on J)


Proof




Definitions occuring in Statement :  derivative: d(f[x])/dx = λz.g[z] on I subinterval: I ⊆  rfun: I ⟶ℝ interval: Interval uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q derivative: d(f[x])/dx = λz.g[z] on I member: t ∈ T and: P ∧ Q prop: nat_plus: + exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] label: ...$L... t rfun: I ⟶ℝ cand: c∧ B iproper: iproper(I) uimplies: supposing a subinterval: I ⊆  rbetween: x≤y≤z guard: {T} sq_exists: x:{A| B[x]} rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q rless: x < y decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top
Lemmas referenced :  compact-subinterval i-approx_wf icompact_wf subinterval_transitivity less_than_wf i-approx-is-subinterval set_wf nat_plus_wf iproper_wf derivative_wf i-member_wf real_wf subinterval_wf rfun_wf interval_wf i-finite_wf i-finite-subinterval i-member-finite left-endpoint_wf i-approx-finite icompact-endpoints right-endpoint_wf rless_transitivity2 rless_transitivity1 i-member-approx rless_wf int-to-real_wf all_wf rleq_wf rabs_wf rsub_wf rmul_wf rdiv_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalHypSubstitution cut hypothesis dependent_functionElimination thin hypothesisEquality introduction extract_by_obid setElimination rename dependent_set_memberEquality isectElimination productElimination independent_functionElimination natural_numberEquality because_Cache sqequalRule lambdaEquality productEquality applyEquality setEquality independent_pairFormation independent_isectElimination promote_hyp functionEquality inrFormation unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll

Latex:
\mforall{}I,J:Interval.    \mforall{}[f,f':I  {}\mrightarrow{}\mBbbR{}].    (J  \msubseteq{}  I    {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.f'[x]  on  I  {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.f'[x]  on  J)



Date html generated: 2016_10_26-AM-11_19_12
Last ObjectModification: 2016_08_22-PM-10_08_15

Theory : reals


Home Index