Nuprl Lemma : iproper_wf
∀[I:Interval]. (iproper(I) ∈ ℙ)
Proof
Definitions occuring in Statement : 
iproper: iproper(I)
, 
interval: Interval
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iproper: iproper(I)
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uimplies: b supposing a
Lemmas referenced : 
i-finite_wf, 
rless_wf, 
left-endpoint_wf, 
right-endpoint_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[I:Interval].  (iproper(I)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-08_18_14
Last ObjectModification:
2015_12_27-PM-11_57_19
Theory : reals
Home
Index