Nuprl Lemma : left-endpoint_wf
∀[I:Interval]. left-endpoint(I) ∈ ℝ supposing i-finite(I)
Proof
Definitions occuring in Statement : 
left-endpoint: left-endpoint(I)
, 
i-finite: i-finite(I)
, 
interval: Interval
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
left-endpoint: left-endpoint(I)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
pi1_wf_top, 
real_wf, 
endpoints_wf, 
subtype_rel_product, 
top_wf, 
i-finite_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
because_Cache, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[I:Interval].  left-endpoint(I)  \mmember{}  \mBbbR{}  supposing  i-finite(I)
Date html generated:
2016_05_18-AM-08_17_42
Last ObjectModification:
2015_12_27-PM-11_56_33
Theory : reals
Home
Index