Nuprl Lemma : left-endpoint_wf

[I:Interval]. left-endpoint(I) ∈ ℝ supposing i-finite(I)


Proof




Definitions occuring in Statement :  left-endpoint: left-endpoint(I) i-finite: i-finite(I) interval: Interval real: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  left-endpoint: left-endpoint(I) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] top: Top prop:
Lemmas referenced :  pi1_wf_top real_wf endpoints_wf subtype_rel_product top_wf i-finite_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality independent_isectElimination applyEquality lambdaEquality because_Cache lambdaFormation isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I:Interval].  left-endpoint(I)  \mmember{}  \mBbbR{}  supposing  i-finite(I)



Date html generated: 2016_05_18-AM-08_17_42
Last ObjectModification: 2015_12_27-PM-11_56_33

Theory : reals


Home Index