Nuprl Lemma : endpoints_wf

[I:Interval]. endpoints(I) ∈ ℝ × ℝ supposing i-finite(I)


Proof




Definitions occuring in Statement :  endpoints: endpoints(I) i-finite: i-finite(I) interval: Interval real: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a endpoints: endpoints(I) interval: Interval i-finite: i-finite(I) and: P ∧ Q all: x:A. B[x] implies:  Q prop:
Lemmas referenced :  outl_wf real_wf top_wf equal_wf i-finite_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality extract_by_obid isectElimination unionEquality hypothesis hypothesisEquality independent_isectElimination equalityTransitivity equalitySymmetry lambdaFormation unionElimination dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality because_Cache

Latex:
\mforall{}[I:Interval].  endpoints(I)  \mmember{}  \mBbbR{}  \mtimes{}  \mBbbR{}  supposing  i-finite(I)



Date html generated: 2019_10_29-AM-10_45_20
Last ObjectModification: 2018_08_21-PM-02_00_51

Theory : reals


Home Index