Nuprl Lemma : endpoints_wf
∀[I:Interval]. endpoints(I) ∈ ℝ × ℝ supposing i-finite(I)
Proof
Definitions occuring in Statement : 
endpoints: endpoints(I)
, 
i-finite: i-finite(I)
, 
interval: Interval
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
endpoints: endpoints(I)
, 
interval: Interval
, 
i-finite: i-finite(I)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
outl_wf, 
real_wf, 
top_wf, 
equal_wf, 
i-finite_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
extract_by_obid, 
isectElimination, 
unionEquality, 
hypothesis, 
hypothesisEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[I:Interval].  endpoints(I)  \mmember{}  \mBbbR{}  \mtimes{}  \mBbbR{}  supposing  i-finite(I)
Date html generated:
2019_10_29-AM-10_45_20
Last ObjectModification:
2018_08_21-PM-02_00_51
Theory : reals
Home
Index