Nuprl Lemma : right-endpoint_wf

[I:Interval]. right-endpoint(I) ∈ ℝ supposing i-finite(I)


Proof




Definitions occuring in Statement :  right-endpoint: right-endpoint(I) i-finite: i-finite(I) interval: Interval real: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  right-endpoint: right-endpoint(I) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  pi2_wf real_wf endpoints_wf i-finite_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality hypothesisEquality independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[I:Interval].  right-endpoint(I)  \mmember{}  \mBbbR{}  supposing  i-finite(I)



Date html generated: 2016_05_18-AM-08_17_58
Last ObjectModification: 2015_12_27-PM-11_57_01

Theory : reals


Home Index