Nuprl Lemma : i-approx-is-subinterval

I:Interval. ∀n:ℕ+.  i-approx(I;n) ⊆ 


Proof




Definitions occuring in Statement :  subinterval: I ⊆  i-approx: i-approx(I;n) interval: Interval nat_plus: + all: x:A. B[x]
Definitions unfolded in proof :  subinterval: I ⊆  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x]
Lemmas referenced :  i-member-approx i-member_wf i-approx_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis isectElimination because_Cache

Latex:
\mforall{}I:Interval.  \mforall{}n:\mBbbN{}\msupplus{}.    i-approx(I;n)  \msubseteq{}  I 



Date html generated: 2016_05_18-AM-08_49_41
Last ObjectModification: 2015_12_27-PM-11_44_00

Theory : reals


Home Index