Nuprl Lemma : icompact-endpoints

I:Interval. (icompact(I)  ((left-endpoint(I) ∈ I) ∧ (right-endpoint(I) ∈ I)))


Proof




Definitions occuring in Statement :  icompact: icompact(I) i-member: r ∈ I right-endpoint: right-endpoint(I) left-endpoint: left-endpoint(I) interval: Interval all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a icompact: icompact(I) and: P ∧ Q interval: Interval i-finite: i-finite(I) isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt right-endpoint: right-endpoint(I) i-member: r ∈ I left-endpoint: left-endpoint(I) i-length: |I| endpoints: endpoints(I) outl: outl(x) pi1: fst(t) pi2: snd(t) cand: c∧ B itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q) prop: true: True i-closed: i-closed(I) bnot: ¬bb bor: p ∨bq bfalse: ff
Lemmas referenced :  icompact-length-nonneg rleq_weakening_equal rleq-implies-rleq int-to-real_wf rsub_wf real_term_polynomial itermSubtract_wf itermVar_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma req-iff-rsub-is-0 rleq_wf i-length_wf real_wf top_wf icompact_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis productElimination unionElimination sqequalRule because_Cache independent_pairFormation natural_numberEquality dependent_functionElimination computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality equalityElimination independent_pairEquality inlEquality inrEquality equalityTransitivity equalitySymmetry independent_functionElimination

Latex:
\mforall{}I:Interval.  (icompact(I)  {}\mRightarrow{}  ((left-endpoint(I)  \mmember{}  I)  \mwedge{}  (right-endpoint(I)  \mmember{}  I)))



Date html generated: 2017_10_03-AM-09_33_53
Last ObjectModification: 2017_07_28-AM-07_51_56

Theory : reals


Home Index